The William Lowell Putnam Mathematical Competition 1988.

Problem B-4. Prove that if $\sum_{n=1}^{\infty} a_n$ is a convergent series of positive real numbers, then so is $\sum_{n=1}^{\infty} (a_n)^{n/(n+1)}$.

 $Solution \ I.$

http://www.math.hawaii.edu/~dale/putnam/1988.pdf

Let $S = \{n : (a_n)^{n/(n+1)} < 2a_n\}$. If $n \notin S$, $(a_n)^{n/(n+1)} \ge 2a_n$, or equivalently $1/2 \ge (a_n)^{1-n/(n+1)} = (a_n)^{1/(n+1)}$, which is the same as $1/2^n \ge (a_n)^{n/(n+1)}$. It follows that

$$\sum_{n=1}^{\infty} (a_n)^{n/(n+1)} \le \sum_{n \in S} (a_n)^{n/(n+1)} + \sum_{n \notin S} 1/2^n < \infty.$$

Solution II. (by Jozef Doboš, P J Šafárik University, Košice)

By the Arithmetic and Geometric Mean Inequality,

$$a_n^{\frac{n}{n+1}} = \sqrt[n+1]{\frac{1}{n+3} \cdot (n+3)a_n \cdot a_n^{n-1}} \le \frac{1}{\frac{n+3}{n+3} + (n+3)a_n + (n-1)a_n}{n+1} = \frac{1}{(n+1)(n+3)} + 2a_n.$$

Problem of the Week, Purdue University, Fall 2005 Series.

Problem No. 8. Assume that $a_n > 0$ for each n, and that

$$\sum_{n=1}^{\infty} a_n$$

converges. Prove that

$$\sum_{n=1}^{\infty} a_n^{\frac{n-1}{n}}$$

converges as well.

Solution I. (by Georges Ghosn, Quebec)

 $\label{eq:http://www.math.purdue.edu/pow/fall2005/pdf/solution8.pdf$ We have for $n\geq 2,$

$$\begin{split} a_n^{\frac{n-1}{n}} &= (a_n^{1/2}a_n^{1/2} \cdot a_n^{n-2})^{\frac{1}{n}} \leq \frac{2\sqrt{a_n} + (n-2)a_n}{n} \quad \text{(Arithmetic-geometric Inequality)} \\ \text{But } \frac{2\sqrt{a_n}}{n} \leq \frac{1}{n^2} + a_n \text{ (because } 2xy \leq x^2 + y^2), \\ \text{and } \frac{(n-2)a_n}{n} \leq a_n \text{ (because } \frac{n-2}{n} \leq 1). \\ \text{Therefore, } 0 < a_n^{\frac{n-1}{n}} \leq \frac{1}{n^2} + 2a_n, \text{ for each } n \geq 1. \text{ Finally the comparison test} \\ \text{shows that } \sum_{n=1}^{\infty} a_n^{\frac{n-1}{n}} \text{ converges since } \sum_{n=1}^{\infty} \left(\frac{1}{n^2} + 2a_n\right) = \sum_{n=1}^{\infty} \frac{1}{n^2} + 2\sum_{n=1}^{\infty} a_n \text{ clearly} \\ \text{converges.} \end{split}$$

Solution II. (by the Panel)

http://www.math.purdue.edu/pow/fall2005/pdf/solution8.pdf

Each term a_n satisfies either the inequality $0 < a_n \le \frac{1}{2^n}$ or $\frac{1}{2^n} < a_n$. In the first case, $a_n^{\frac{n-1}{n}} \le \frac{1}{2^{n-1}}$. In the second one, $a_n^{\frac{n-1}{n}} = \frac{a_n}{a_n^{\frac{1}{n}}} \le 2a_n$. Therefore, in both cases,

$$0 < a_n^{\frac{n-1}{n}} \le \frac{1}{2^n} + 2a_n.$$

The conclusion is now immediate since $\sum_{n=1}^{\infty} \frac{1}{2^n}$ converges, and so does $\sum_{n=1}^{\infty} 2a_n$.