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Problem B-4. Prove that if
∞∑

n=1
an is a convergent series of positive real num-

bers, then so is
∞∑

n=1
(an)n/(n+1).

Solution I.
http://www.math.hawaii.edu/~dale/putnam/1988.pdf

Let S = {n : (an)n/(n+1) < 2an}.
If n /∈ S, (an)n/(n+1) ≥ 2an, or equivalently 1/2 ≥ (an)1−n/(n+1) = (an)1/(n+1),
which is the same as 1/2n ≥ (an)n/(n+1). It follows that

∞∑
n=1

(an)
n/(n+1) ≤

∑
n∈S

(an)
n/(n+1) +

∑
n/∈S

1/2n < ∞.

Solution II. (by Jozef Doboš, P J Šafárik University, Košice)

By the Arithmetic and Geometric Mean Inequality,

a
n

n+1
n = n+1

√
1

n+ 3
· (n+ 3)an · an−1

n ≤

≤

1
n+ 3

+ (n+ 3)an + (n− 1)an

n+ 1
=

1
(n+ 1)(n+ 3)

+ 2an.



Problem of the Week, Purdue University, Fall 2005 Series.
• •• •

• •• •

Problem No. 8. Assume that an > 0 for each n, and that

∞∑
n=1

an

converges. Prove that
∞∑

n=1

a
n−1

n
n

converges as well.

Solution I. (by Georges Ghosn, Quebec)

http://www.math.purdue.edu/pow/fall2005/pdf/solution8.pdf

We have for n ≥ 2,

a
n−1

n
n = (a1/2n a1/2n ·an−2

n )
1
n ≤

2
√

an + (n− 2)an

n
(Arithmetic-geometric Inequality)

But
2
√

an

n
≤ 1

n2
+ an (because 2xy ≤ x2 + y2),

and
(n− 2)an

n
≤ an (because

n− 2
n

≤ 1).

Therefore, 0 < a
n−1

n
n ≤ 1

n2
+ 2an, for each n ≥ 1. Finally the comparison test

shows that
∞∑

n=1

a
n−1

n
n converges since

∞∑
n=1

(
1
n2
+ 2an

)
=

∞∑
n=1

1
n2
+ 2

∞∑
n=1

an clearly

converges.

Solution II. (by the Panel)

http://www.math.purdue.edu/pow/fall2005/pdf/solution8.pdf

Each term an satisfies either the inequality 0 < an ≤
1
2n
or
1
2n

< an. In the first

case, a
n−1

n
n ≤ 1

2n−1
. In the second one, a

n−1
n

n =
an

a
1
n
n

≤ 2an. Therefore, in both

cases,

0 < a
n−1

n
n ≤ 1

2n
+ 2an.

The conclusion is now immediate since
∞∑

n=1

1
2n
converges, and so does

∞∑
n=1

2an.


