The William Lowell Putnam Mathematical Competition 1988.

Problem B-4. Prove that if $\sum_{n=1}^{\infty} a_{n}$ is a convergent series of positive real numbers, then so is $\sum_{n=1}^{\infty}\left(a_{n}\right)^{n /(n+1)}$.

Solution I.

http://www.math.hawaii.edu/~dale/putnam/1988.pdf
Let $S=\left\{n:\left(a_{n}\right)^{n /(n+1)}<2 a_{n}\right\}$.
If $n \notin S,\left(a_{n}\right)^{n /(n+1)} \geq 2 a_{n}$, or equivalently $1 / 2 \geq\left(a_{n}\right)^{1-n /(n+1)}=\left(a_{n}\right)^{1 /(n+1)}$, which is the same as $1 / 2^{n} \geq\left(a_{n}\right)^{n /(n+1)}$. It follows that

$$
\sum_{n=1}^{\infty}\left(a_{n}\right)^{n /(n+1)} \leq \sum_{n \in S}\left(a_{n}\right)^{n /(n+1)}+\sum_{n \notin S} 1 / 2^{n}<\infty
$$

Solution II. (by Jozef Doboš, P J Šafárik University, Košice)
By the Arithmetic and Geometric Mean Inequality,

$$
\begin{aligned}
& a_{n}^{\frac{n}{n+1}}=\sqrt[n+1]{\frac{1}{n+3} \cdot(n+3) a_{n} \cdot a_{n}^{n-1}} \leq \\
& \leq \frac{\frac{1}{n+3}+(n+3) a_{n}+(n-1) a_{n}}{n+1}=\frac{1}{(n+1)(n+3)}+2 a_{n}
\end{aligned}
$$

Problem No. 8. Assume that $a_{n}>0$ for each n, and that

$$
\sum_{n=1}^{\infty} a_{n}
$$

converges. Prove that

$$
\sum_{n=1}^{\infty} a_{n}^{\frac{n-1}{n}}
$$

converges as well.

Solution I. (by Georges Ghosn, Quebec)
http://www.math.purdue.edu/pow/fall2005/pdf/solution8.pdf
We have for $n \geq 2$,
$a_{n}^{\frac{n-1}{n}}=\left(a_{n}^{1 / 2} a_{n}^{1 / 2} \cdot a_{n}^{n-2}\right)^{\frac{1}{n}} \leq \frac{2 \sqrt{a_{n}}+(n-2) a_{n}}{n}$ (Arithmetic-geometric Inequality)
But $\frac{2 \sqrt{a_{n}}}{n} \leq \frac{1}{n^{2}}+a_{n}$ (because $2 x y \leq x^{2}+y^{2}$),
and $\frac{(n-2) a_{n}}{n} \leq a_{n}$ (because $\frac{n-2}{n} \leq 1$).
Therefore, $0<a_{n}^{\frac{n-1}{n}} \leq \frac{1}{n^{2}}+2 a_{n}$, for each $n \geq 1$. Finally the comparison test shows that $\sum_{n=1}^{\infty} a^{\frac{n-1}{n}}$ converges since $\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}+2 a_{n}\right)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}+2 \sum_{n=1}^{\infty} a_{n}$ clearly converges.

Solution II. (by the Panel)
http://www.math.purdue.edu/pow/fall2005/pdf/solution8.pdf
Each term a_{n} satisfies either the inequality $0<a_{n} \leq \frac{1}{2^{n}}$ or $\frac{1}{2^{n}}<a_{n}$. In the first case, $a_{n}^{\frac{n-1}{n}} \leq \frac{1}{2^{n-1}}$. In the second one, $a_{n}^{\frac{n-1}{n}}=\frac{a_{n}}{a_{n}^{\frac{1}{n}}} \leq 2 a_{n}$. Therefore, in both cases,

$$
0<a_{n}^{\frac{n-1}{n}} \leq \frac{1}{2^{n}}+2 a_{n}
$$

The conclusion is now immediate since $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ converges, and so does $\sum_{n=1}^{\infty} 2 a_{n}$.

