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We call a function f : [0,+∞) → [0,+∞)
metric preserving iff for each metric space
(X, d) the function f ◦ d is a metric on X .
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of these functions was by Sreenivasan in
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subject of metric preserving functions.
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0. Introduction

We begin with three examples:

Example 1. You are in New York City, just got a cab – you get in. The
meter shows $ 1.50. This is a flat rate, as the driver says. Now every 18 of a
mile will cost you $ 0.25. The graph is shown in Figure 1.

↑Cost ($)
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3
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Figure 1

Example 2. Have you called your friend in Paris, France from NY? The
current AT&T full rate is $ 1.71 for the first minute and $ 1.08 for every
additional minute. This data is shown on the graph in Figure 2.

↑Cost ($)

3.87 ◦ •

2.79 ◦ •

1.71 ◦ •

• →
0 1 2 3 time (min.)

Figure 2
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Example 3. Imagine that you operate a truck fleet. Observe that the
distance travelled by a truck corresponds to a certain amount of money spent
on fuel. Conservative estimates show about 10 miles per gallon. Assume
1 gallon of fuel costs $ 1.00.

If we place the distance (in miles) on the x-axis and the cost (in $) on
the y-axis then the function f : [0,+∞)→ [0,+∞) is given by f(x) = d x

10e,
x ≥ 0; where x 7→ dxe is the ceiling function, which returns the smallest
integer that is not less than its argument, i.e. dae = min([a,+∞) ∩ Z).

What do these three examples have in common? In each instance we
replace the actual distance, or time, as in Example 2, by the cost.

Let X be a nonempty set. We say that a function d : X2 → [0,+∞) is a
metric, if the following axioms are met for each x, y, z ∈ X :

(M1) d(x, y) = 0 iff x = y,

(M2) d(x, y) = d(y, x),

(M3) d(x, y) ≤ d(x, z)+d(z, y) (the triangle inequality).

The pair (X, d) is called a metric space. It is essentially a set in which it is
possible to speak of the distance between each two of its elements.

Formalizing the above discussion we have the following general problem:

Given a metric d, we shall refer to d as ‘the old metric’. We will consider
functions f : [0,+∞)→ [0,+∞) such that the composition ζ, defined by:

ζ(x, y) = f(d(x, y))
is a ‘new’ metric.

Probably the first example which comes to mind is the ceiling func-
tion x 7→ dxe. In fact, such a composition will produce a metric (see the
following theorem).

Theorem 1. (See Kelley [33], p. 131.) Let f be a real-valued function
defined for nonnegative numbers, and such that f is continuous, (the conti-
nuity of f is needed only for the equivalence of d with ζ, see Theorem 3.2),
nondecreasing and satisfying the following two conditions:

(1) f(a) = 0⇔ a = 0, and
(2) f(a+ b) ≤ f(a) + f(b), for each a, b.

Let (X, d) be a metric space and let ζ(x, y) = f(d(x, y)) for each x, y ∈ X.
Then (X, ζ) is a metric space and the metrics d and ζ are topologically
equivalent.
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Corollary 1. Let (X, d) be a metric space and let
ζ(x, y) = dd(x, y)e for each x, y ∈ X.

Then (X, ζ) is a metric space.

Proof. Let f : [0,+∞)→ [0,+∞) be defined by f(x) = dxe. (See Fig. 3.)
Let a, b ≥ 0. Since dae ∈ Z, dae ≥ a, and dbe ∈ Z, dbe ≥ b, we have

dae+ dbe ∈ Z, dae+ dbe ≥ a+ b.

Thus
dae+ dbe ∈ [a+ b,+∞) ∩ Z,

which yields

da+ be = min([a+ b,+∞) ∩ Z) ≤ dae+ dbe.

↑

◦ •

y=dxe

◦ •

◦ •

• →
0 1 2 3

Figure 3

Corollary 2. Let (X, d) be a metric space and let

ζ(x, y) =
d(x, y)

1 + d(x, y)
for each x, y ∈ X.

Then (X, ζ) is a metric space and the metrics d and ζ are topologically
equivalent.

Proof. Let f : [0,+∞)→ [0,+∞) be defined by (see Fig. 4)

f(x) =
x

1 + x
, (x ≥ 0).
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Figure 4

y = x
1+x

0

1

Let a, b ≥ 0. Then

f(a+b) =
a+ b

1 + a+ b
=

a

1 + a+ b
+

b

1 + a+ b
≤

a

1 + a
+

b

1 + b
= f(a)+f(b).
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1. Preliminaries

Let (X, d) be a metric space. For each f : [0,+∞) → [0,+∞) define a
function df : X

2 → [0,+∞) as follows

df (x, y) = f(d(x, y)) for each x, y ∈ X.

X2 [0,+∞)

[0,+∞)

d

f(d)
f

.............................................................................................. ........

............................................................................................................................. ........

........................................................................
.
.......
.

We call a function f : [0,+∞) → [0,+∞) metric preserving iff for each
metric space (X, d) the function df is a metric on X . For example, we can
derive a bounded metric from a given metric by the function x 7→ x

1+x
(see

Corollary 0.2). This idea is used in the construction of the Fréchet metric
on a product of a countable family of metric spaces, i.e.

%(x, y) =

∞
∑

i=1

2−i ·
di(xi, yi)

1 + di(xi, yi)
.

Denote by O the set of all functions f : [0,+∞)→ [0,+∞) with

f−1(0) = {0}.

We call such functions amenable. It is easy to see that every metric pre-
serving function is amenable.

Let us recall that a function f : [0,+∞)→ [0,+∞) is said to be subad-
ditive if it satisfies the inequality

f(x+ y) 5 f(x) + f(y)

whenever x, y ∈ [0,+∞). (See [31] and [53].)

In the following we show an importance of subadditivity in our investi-
gations. This theorem first appeared in Wilson’s early paper [67].
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Wilson’s Theorem. Let f ∈ O be such that

a, b, c ≥ 0 and a ≤ b+ c imply

f(a) ≤ f(b) + f(c).

Then f is metric preserving.

This theorem can be expressed somewhat differently. (See Theorem 0.1.)

Theorem 1. Suppose that f ∈ O is nondecreasing and subadditive. Then
f is metric preserving.

Proof. Let (X, d) be a metric space; we show that f ◦ d is a metric. Prop-
erties (M1) and (M2) are easy to check. For (M3), let x, y, z ∈ X , and
let

a = d(x, z), b = d(z, y), and c = d(x, y).

It suffices to show that f(a) + f(b) ≥ f(c). But

f(a) + f(b) ≥ f(a+ b) (subadditive)

≥ f(c) (nondecreasing),

as required.

On the other hand, the next proposition provides a necessary condition
for a function to be metric preserving.

Proposition 1. Every metric preserving function is subadditive.

Proof. Let f : [0,+∞)→ [0,+∞) be a metric preserving function. Denote
by e the usual metric on the real line, i.e. e(x, y) = |x−y| for each x, y ∈ R.
Suppose that a, b ∈ [0,∞). Then

f(a+ b) = ef (0, a+ b) ≤ ef(0, a) + ef (a, a+ b) = f(a) + f(b).

The following criterion of subadditivity is well known.

Proposition 2. Let f ∈ O and the function x 7→ f(x)
x
be nonincreasing on

(0,+∞). Then f is subadditive.

Proof. Let a, b ∈ (0,+∞). Then

f(a+ b) = a ·
f(a+ b)

a+ b
+ b ·

f(a+ b)

a+ b
≤ a ·

f(a)

a
+ b ·

f(b)

b
= f(a) + f(b).

While subadditivity is an important necessary condition, the following
three examples show that it is not sufficient for an amenable function to be
metric preserving.
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Example 1. (See [15].) Define f : [0,+∞)→ [0,+∞) as follows

f(x) =
x

1 + x2
for all x ∈ [0,+∞).

Since the function x 7→ f(x)
x
is nonincreasing on (0,+∞), by Proposition 2

the function f is subadditive (see Fig. 5). Note that f is not metric pre-
serving. (See Corollary 2.1.)

0

y = f(x)

y = f(x)
x

Figure 5

Example 2. (See [25], p.133.) Define f : [0,+∞)→ [0,+∞) as follows

f(x) =

{

x if x < 1,
1
2 otherwise.

By Proposition 2 the function f is subadditive. (See Fig. 6.) Note that this
function is not metric preserving. (See Theorem 3.1.)
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•

◦

y = f(x)

y = f(x)
x

0

1

1
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Example 3. Define f : [0,+∞)→ [0,+∞) as follows

f(x) =

{ x
1+x

on Q,

1 otherwise.

It is not difficult to verify that f is subadditive. Evidently f is discontinuous
at each point of [0,+∞). Note that f is not metric preserving.

The converse of Proposition 2 is not true, as the following example shows.

Example 4. Define f : [0,+∞)→ [0,+∞) as follows

f(x) = 3
4 · x+

1
2 −

1
4 · |3x − 1|+ 14 · |3x − 2| − 3

4 · |x − 1|.

Since the function f is metric preserving, it is subadditive. (See Fig. 7.)

Note that the function x 7→ f(x)
x
is not nonincreasing.

Simple examples of metric preserving functions are concave functions.
(See [56], [4], and [58].) Let us recall that a function f : [0,+∞)→ [0,+∞)
is called concave iff

f((1− t)x1 + tx2) ≥ (1− t)f(x1) + tf(x2),

whenever x1, x2 ∈ [0,+∞) and 0 ≤ t ≤ 1.
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A less restrictive definition of a concave function f is the requirement
that f be midpoint-concave: ”at the midpoint of an interval the curve lies
above the chord”, i.e. the inequality

f

(

x+ y

2

)

≥
f(x) + f(y)

2

holds for all x, y ∈ [0,+∞). Note that for amenable functions those two
notions are equivalent. (See [26].)

y = f(x)

y = f(x)
x

Figure 7

Lemma 1. Suppose that f ∈ O is concave. Then the function x 7→ f(x)
x
is

nonincreasing on (0,+∞).

Proof. Let a, b ∈ (0,+∞), a < b. Put t = a
b
, x1 = 0, x2 = b. Since f

is concave, we have f(a) ≥ a
b
· f(b). Therefore the function x 7→ f(x)

x
is

nonincreasing on (0,+∞).

Theorem 2. Let f ∈ O. Then f is concave iff

(*) ∀t ≥ 0 ∀x, y, z ∈ [0, t], x+ t = y + z : f(x) + f(t) ≤ f(y) + f(z).
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Proof. Suppose that f is concave. Let t ≥ 0, x, y, z ∈ [0, t], x + t = y + z.
Suppose that y ≤ z. We distinguish two cases.

1) Let y = z. Since y = 1
2 (x + t), by the assumption we have

f(y) ≥ 1
2 (f(x) + f(t)), i.e. f(x) + f(t) ≤ f(y) + f(y) = f(y) + f(z).

2) Let y < z. Let p > 0 be such that y = px + (1 − p)z. Then
z = pt+ (1− p)y. By the assumption we obtain

f(y) ≥ pf(x) + (1− p)f(z),

f(z) ≥ pf(t) + (1 − p)f(y),

Thus f(y) + f(z) ≥ p(f(x) + f(t)) + (1 − p)(f(z) + f(y)), which
yields f(x) + f(t) ≤ f(y) + f(z).

On the other hand, suppose that (*) holds. We show that f is midpoint-
concave. Let 0 < x < y. Since 0 < x < 1

2 (x+ y) = 1
2 (x+ y) < y, by (*) we

have f(x) + f(y) ≤ f
(

x+y
2

)

+ f
(

x+y
2

)

.

Remark. Observe that putting x = 0 in (*) we obtain the subadditivity
of f .

Theorem 3. Suppose that f ∈ O is concave. Then f is metric preserving.

Proof. The subadditivity of f follows from Lemma 1 (or from Remark).
Now, we will show that f is nondecreasing. We procede by contradiction.

Suppose that there are x, y ∈ (0,+∞) such that x < y and f(x) > f(y).
Put

t =
f(y)

f(x)
, x1 =

yf(x)− xf(y)

f(x)− f(y)
, x2 = x.

Since f is concave, we have

f(y) ≥ (1− t)f(x1) + f(y),

which yields f(x1) ≤ 0, a contradiction.

A continuous, nondecreasing, metric preserving function which is not
concave is shown in Example 4.
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The next comparison test of subadditivity is a generalization of Propo-
sition 2.

Proposition 3. (See [37].) Let f, g ∈ O. If g is subadditive and the

function x 7→ f(x)
g(x) is nonincreasing on (0,+∞), then f is subadditive.

Proof. For a, b > 0 we have

f(a+ b) =
f(a+ b)

g(a+ b)
· g(a+ b) ≤

f(a+ b)

g(a+ b)
· (g(a) + g(b))

≤
f(a)

g(a)
· g(a) +

f(b)

g(b)
· g(b) = f(a) + f(b).

Let us finally note that subadditivity admits a nice characterization in
terms of infimal convolution. If f, g ∈ O, then their infimal convolute f�g
(see [42] and [59]) is the function that sends each x ∈ [0,+∞) to the real
number

(f�g)(x) = inf{f(y) + g(z) : y, z ∈ [0,+∞) and y + z = x}.

Proposition 4. (See [59].) Let f, g ∈ O. Then the following statements
hold:

(1) f is subadditive iff f�f = f ,
(2) if min(f, g) is subadditive, then f�g = min(f, g), and
(3) if f and g are both subadditive, then f�g is the largest subadditive
minorant of min(f, g).

Remark. Let f, g ∈ O be nondecreasing. Suppose that x 7→ f(x)
x
and

x 7→ g(x)
x
are nonincreasing on (0,+∞). (This is the case for instance if

f and g are concave.) Put h = min(f, g). Then h is nondecreasing and

x 7→ h(x)
x
is nonincreasing on (0,+∞). Consequently, h is subadditive.

Thus h = f�g.

For recent results on subadditive functions, see [39] and [40]. Let us
mention only one of the results proved there.

Proposition 5. (See [40].) Every subadditive and right-continuous bijec-
tion of [0,+∞) is a homeomorphism.
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2. Characterization of metric preserving functions

Let a, b and c be positive real numbers. We call the triplet (a, b, c) a
triangle triplet (see [60]) iff

a ≤ b+ c, b ≤ a+ c, and c ≤ a+ b;

|a − b| ≤ c ≤ a+ b;equivalently,

a+ b+ c ≥ 2 ·max{a, b, c}.i. e.

Triangle triplets are used in place of the more awkward terms d(x, y),
d(x, z), d(z, y) for various metrics d. The following result gives a character-
ization of triangle triplets, which is based on the fact that each three-points
metric space has a representation by certain subspace of the Euclidean plane.
(See [4].)

Proposition 1. Let a, b and c be positive real numbers. Then the triplet
(a, b, c) is a triangle triplet iff there are x, y, z ∈ R2, x 6= y 6= z 6= x, such
that

a = e(x, y), b = e(x, z), c = e(z, y),

where e denotes the Euclidean metric on R2.

Proof. Suppose that (a, b, c) is a triangle triplet. Put

x =
(a

2
, 0

)

, y =
(

−
a

2
, 0

)

,

z =

(

c2 − b2

2a
,
1

2a
·
√

(a+ b+ c)(a+ b − c)(a − b+ c)(−a+ b+ c)

)

.

Then a = e(x, y), b = e(x, z), c = e(z, y).
On the other hand, if x, y, z ∈ R2, x 6= y 6= z 6= x, then

(e(x, y), e(x, z), e(z, y)) is a triangle triplet.

This is immediate from the triangle inequality.

As a corollary we obtain the following theorem which gives a characteri-
zation of metric preserving functions. (See [58], [4], and [17].)
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Theorem 1. Let f ∈ O. Then the following are equivalent:

(1) f is metric preserving,
(2) if (a, b, c) is a triangle triplet, then so is (f(a), f(b), f(c)),
(3) if (a, b, c) is a triangle triplet, then f(a) ≤ f(b) + f(c), and
(4) ∀x, y ∈ [0,+∞) : max{f(z); |x − y| ≤ z ≤ x+ y} ≤ f(x) + f(y).

The following corollary shows that no function f ∈ O having the x-axis
as a horizontal asymptote is metric preserving.

Corollary 1. (See [4].) Let f be a metric preserving function. Then

∀a, b ∈ [0,+∞) : a ≤ 2b ⇒ f(a) ≤ 2f(b).

Note that the asumption ”metric preserving” in Corollary 1 cannot be
replaced by the assumption ”subadditive”, as Example 1.1 shows.

The proofs of the following two propositions are straightforward and we
omit them.

Proposition 2. (See [4].)

(1) If f , g are metric preserving and k > 0, then each of f ◦ g, f + g,
k · f , and max(f, g) is metric preserving.

(2) If fn (n ∈ N) are metric preserving functions that converge to a
function f ∈ O, then f is metric preserving. Under the same hy-
pothesis, if

∑∞
n=1 fn converges to a function s, then s is metric

preserving.
(3) If (ft)t∈T is any indexed family of metric preserving functions that
is pointwise bounded, then the function x 7→ sup{ft(x); t ∈ T } is
metric preserving.

Let Ω denote the first uncountable ordinal number. A transfinite se-
quence (aξ)ξ<Ω of nonnegative reals is said to be convergent and have a
limit a ∈ [0,+∞) if for each ε > 0 there exists an ordinal number α < Ω
such that d(aξ, a) < ε whenever α ≤ ξ < Ω. If (aξ)ξ<Ω has a limit a, we
write lim

ξ→Ω
aξ = a.

A transfinite sequence (fξ)ξ<Ω of functions fξ : [0,+∞) → [0,+∞) is
said to be convergent and to have a limit function f : [0,+∞)→ [0,+∞) if
for each x ∈ [0,+∞) we have lim

ξ→Ω
fξ(x) = f(x).
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Proposition 3. (See [4].) If (fξ)ξ < Ω is a tranfinite sequence of met-
ric preserving functions which converges to a function f , then f is metric
preserving.

Finally, we will show that ”most” metric preserving functions are not
continuous. We call an amenable function f tightly bounded if for some
a > 0, f(x) ∈ [a, 2a] for all x > 0. (See [15].)

Proposition 4. If f is amenable and tightly bounded, then f is metric
preserving.

Proof. Let a > 0 be such that for all x > 0, f(x) ∈ [a, 2a], and let (a, b, c)
be a triangle triplet. Then f(a) ≤ 2a = a+ a ≤ f(b) + f(c).

Every amenable, tightly bounded function is necessarily discontinuous
at 0. It follows that there are 2c tightly bounded, amenable functions (where
c is the cardinality of R).
The following example shows that there is a metric preserving function

which is nowhere continuous and nowhere of bounded variation.

Example 1. Define f : [0,+∞)→ [0,+∞) by

f(x) =











0 if x = 0,

1 if x is irrational,

2 otherwise.

Since f is amenable and tightly bounded, it is metric preserving; because
the sets (0,+∞) ∩ Q and (0,+∞)− Q are dense in (0,+∞), f satisfies the
required pathologies.
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3. Strongly metric preserving functions

We call f : [0,+∞)→ [0,+∞) strongly metric preserving if for all metric
spaces (X, d), df is a metric topologically equivalent to d. (See [15].)

In this section we characterize the strongly metric preserving functions.
An important theme here is the significance of the behavior of a metric pre-
serving function at 0. We show that such an f is strongly metric preserving
if and only if f is continuous at 0.
We begin with the following definition. Given a point x of a metric space

(X, d) and a positive real number ε, the open ball with the center x and
radius ε is the set

Bd(x; ε) = {y ∈ X ; d(x, y) < ε}.

If in Theorem 2.1 we let c = |a − b|, we obtain the following result.

Proposition 1. (See [7].) If f is metric preserving, then

∀a, b ∈ [0,+∞) : |f(a)− f(b)| ≤ f(|a − b|).

Theorem 1. (See [4].) Supose that f is metric preserving. Then the
following are equivalent:

(1) f is continuous,
(2) f is continuous at 0, and
(3) ∀ε > 0 ∃x > 0 : f(x) < ε.

Proof. It follows from Proposition 1 that (2) implies (1). Indeed, let ε > 0.
From the continuity of f at 0 it follows that there is δ > 0 such that

x ∈ [0, δ) implies f(x) < ε,

which yields

a, b ∈ [0,+∞), and |a − b| ≤ δ implies |f(a)− f(b)| ≤ f(|a − b|) < ε.

It follows from Corollary 2.1 that (3) implies (2). Indeed, let ε > 0. Then
there is x0 > 0 such that f(x0) < ε

2 . Put δ = 2x0. By Corollary 2.1 we
have

x ∈ [0, δ] implies f(x) ≤ 2 · f(x0) < ε.

Note that the asumption ”metric preserving” in Theorem 1 cannot be
replaced by the assumption ”subadditive”, as Example 1.2 shows.



Chapter 3 19

Corollary 1. Let f be metric preserving. If f is discontinuous, there is
ε > 0 such that for all x > 0, f(x) > ε.

Let us recall that a metric space (X, d) is topologically discrete, iff for
every x in X there is ε > 0 such that Bd(x; ε) = {x}. We say that a metric
space (X, d) is uniformly discrete, iff there is ε > 0 such that d(x, y) > ε for
each x, y ∈ X , x 6= y.

Proposition 2. Let f be metric preserving. Then the following are equiv-
alent:

(1) f is discontinuous;
(2) (X, df ) is an uniformly discrete metric space for every metric space
(X, d).

Proof. It follows from Corollary 1 that (1) implies (2).
Now we will show that (2) implies (1). Let e denote the ususal metric on

the real line. Let ε > 0 be such that ef (x, y) > ε whenever x, y ∈ R, x 6= y.
Then for each a ∈ (0,+∞) we have ε < ef (a, 0) = f(a).

Let us recall that two metrics % and σ on a space X are topologically
equivalent iff for each x in X and each ε > 0 there is δ > 0 such that

B%(x; δ) ⊂ Bσ(x; ε), and Bσ(x; δ) ⊂ B%(x; ε).

We say that two metrics % and σ on a space X are uniformly equivalent iff
for each ε > 0 there is δ > 0 such that for all x, y ∈ X we have

%(x, y) < δ implies σ(x, y) < ε, and σ(x, y) < δ implies %(x, y) < ε.

The next theorem first appeared in [4]; one direction of the theorem was
observed in Sreenivasan’s early paper [58].

Theorem 2. (See [4].) Suppose f is metric preserving. Then f is strongly
metric preserving if and only if f is continuous.

Proof. One direction follows from Proposition 2. For the other direction,
suppose f is metric preserving and continuous. Let (X, d) be a metric space.
We show that df and d are uniformly equivalent metrics. Let ε > 0. By
continuity of f at 0, let δ > 0 be such that for all a ∈ [0, δ), f(a) < ε. But
now for each x, y ∈ X we obtain

d(x, y) < δ implies df (x, y) < ε.



20 Chapter 3

By Corollary 2.1 for each a ∈ [0,+∞) we have

f(a) <
f(ε)

2
implies a <

ε

2
.

Put δ =
f(ε)

2
> 0. Then for each x, y ∈ X we obtain

df (x, y) < δ implies d(x, y) <
ε

2
< ε.

Theorem 3. (See [4].) Let f be metric preserving. Suppose that (X, d) is
a metric space which is not topologically discrete. Then the metrics df and
d are topologically equivalent iff f is continuous.

Proof. Suppose that the metrics df and d are topologically equivalent. Let
ε > 0. Since (X, d) is not topologically discrete, there is a ∈ X such that
for each η > 0 there is y ∈ Bd(a; η) such that y 6= a. Let δ > 0 be such
that Bd(a; δ) ⊂ Bdf

(a; ε). Choose b ∈ Bd(a; δ) such that b 6= a. Put
x = d(a, b) > 0. Then f(x) = df (a, b) < ε.
If f is continuous, by Theorem 2 we obtain that the metrics df and d are

topologically equivalent.

Theorem 4. (See [4].) Let f be metric preserving. Suppose that (X, d) is
a metric space which is topologically discrete. Then the metrics df and d
are topologically equivalent.

Proof. If f is discontinuous, by Proposition 2 we obtain that (X, df ) is
uniformly discrete, which yields that the metrics df and d are topologically
equivalent.
If f is continuous, by Theorem 3 we obtain that the metrics df and d are

topologically equivalent.

By the similar argumentation one can prove the following two theorems.

Theorem 5. (See [4].) Let f be metric preserving. Suppose that (X, d) is
a metric space which is not uniformly discrete. Then the metrics df and d
are uniformly equivalent iff f is continuous.

Theorem 6. (See [4].) Let f be metric preserving. Suppose that (X, d) is
a metric space which is uniformly discrete. Then the metrics df and d are
uniformly equivalent.
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Example 1. Denote by e the usual metric on the set X =
{

n−1 : n ∈ N
}

.
Suppose that f is metric preserving function which is discontinuous. Then
the metrics ef and e are topologically equivalent, but they are not uniformly
equivalent.

The results in this section show that, while the variety of possible met-
ric preserving functions yields of a rich class of functions, from a strictly
topological point of view the class is somewhat uninteresting. For any met-
ric space (X, d), the number of possible distinct (up to homeomorphism)
topologies that can be generated by the metrics df , as f ranges over the
metric preserving functions, is ≤ 2 (df must either be equivalent to d or
must induce the discrete topology on X). Nonetheless, the variety of dis-
tinct (up to isometry) metrics that can be generated in this way and that
are topologically equivalent to the original metric — there are c distinct
metrics for each metric space (X, d) having two or more points — can lead
to interesting results, as the theorem of M. J̊uza (see [32]) shows.
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4. Metric preserving functions and convexity

Before stating the result, we recall that a function f : [0,+∞)→ [0,+∞)
is called convex over [r, s] iff

(1) f((1− t)x1 + tx2) ≤ (1− t)f(x1) + tf(x2)

whenever x1, x2 ∈ [r, s] and 0 ≤ t ≤ 1.
Moreover, f is strictly convex if ≤ is replaced by < in (1). Convexity of

f is equivalent to the assertion that for all x, y ∈ [r, s], every point on the
chord from (x, f(x)) to (y, f(y)) is above the graph of f in [0,+∞)2.

Lemma 1. (See [4].) Suppose f : [0,+∞)→ [0,+∞) is subadditive. Then
for all positive integers n and all x ∈ [0,+∞),

f(nx) ≤ nf(x) and 2−nf(x) ≤ f(2−nx).

Proof. By induction.

Theorem 1. (See [7].) Let f : [0,+∞) → [0,+∞) be metric preserving
and h > 0. If f is convex on [0, h], then f is linear on [0, h].

Proof. From the convexity we obtain

(∗) ∀a, b ∈ (0, h] : a ≤ b ⇒
f(a)

a
≤

f(b)

b
.

We shall show that

f(x) =
f(h)

h
· x for each x ∈ [0, h].

Let x ∈ (0, h]. Choose a positive integer n such that 2−nh ≤ x. Then
according to (∗) and Lemma 1 we have f(2−nh) = 2−nf(h). Therefore

f(h)

h
=

f(2−nh)

2−nh
≤

f(x)

x
≤

f(h)

h
,

which yields f(x) =
f(h)

h
· x.

In contrast with Theorem 1 the following example shows that there is a
continuous metric preserving function f such that each neighborhood of 0
contains an interval on which f is strictly convex.
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Example 1. Define f : [0,+∞)→ [0,+∞) as follows (see Fig. 8)

Figure 8

0 rn
1
n

1
n+1

f(x) =



















0, if x = 0,
2n+1
n+1 · x, if x ∈ [ 1

n+1 , rn),

anx3 + bnx2 + cnx+ dn, if x ∈ [rn, 1
n
),

x, if x ∈ [1,+∞),
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where

rn =
(2n − 1)(n+ 1)

(2n+ 1) · n2
,

an =
16n7 + 24n6 + 8n5 − 2n4 − n3

n+ 1
,

bn =
−48n6 − 72n5 − 12n4 + 18n3 + 2n2 − 2n

n+ 1
,

cn =
48n6 + 72n5 − 30n3 + n2 + 5n − 1

n2 + n
,

dn =
−16n4 − 8n3 + 12n2 + 2n − 2

n
.



Chapter 5 25

5. An application of metric preserving functions

An interesting application of metric preserving functions was discovered
by M. J̊uza in 1956, long before the subject had matured [32]. It is now well
known that there are complete nowhere discrete metric spaces that have
a nested sequence of closed balls with empty intersection (but recall that
the diameters of such balls cannot tend to 0). J̊uza observed that the real
line could be topologized to obtain such a space, using a metric preserving
function; in particular, he showed that (R, ef ) has the required property if
e is the usual metric on R, and f is the metric preserving function defined
in the following example.

Example 1. Define f : [0,+∞)→ [0,+∞) as follows (see Fig. 9)

f(x) =

{

x if x ≤ 2,

1 + 1
x−1 if x > 2.

Proposition 1 shows that f is metric preserving.

Figure 9

2

1

0

The following propositions enable to construct continuous metric pre-
serving functions from tightly bounded functions.

Proposition 1. (See [4].) For each function f : [0,+∞) → [0,+∞) and
r > 0 define fr : [0,+∞)→ [0,+∞) as follows

fr(x) =







f(r)

r
· x if x ∈ [0, r),

f(x) if x ∈ [r,+∞).

Let f be metric preserving. Then fr is metric preserving iff

∀x, y ∈ [r,+∞) : |x − y| ≤ r ⇒ |f(x)− f(y)| ≤
f(r)

r
· |x − y|.
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We will prove the following generalization of Proposition 1.

Proposition 2. (See [22].) Let g, h be metric preserving. Let r > 0 be
such that g(r) = h(r). Define fg,h,r : [0,+∞)→ [0,+∞) as follows

fg,h,r(x) =

{

g(x), if x ∈ [0, r),

h(x), if x ∈ [r,∞).

Suppose that g is nondecreasing and concave. Then fg,h,r is metric preserv-
ing iff

∀x, y ∈ [r,∞) : |x − y| ≤ r ⇒ |h(x) − h(y)| ≤ g(|x − y|).

Proof. One direction follows from Proposition 3.1. For the other direction,
suppose 0 < a ≤ b ≤ c ≤ a+ b. We shall show that

(fg,h,r(a), fg,h,r(b), fg,h,r(c)) is a triangle triplet.

We distinguish two non-trivial cases.

a) Suppose that a, b ∈ (0, r), and c ∈ [r,+∞). Evidently

fg,h,r(a) ≤ fg,h,r(b) ≤ fg,h,r(b) + fg,h,r(c).

Since |g(r)− h(c)| ≤ g(|r − c|), we obtain

fg,h,r(b) = g(b) ≤ g(r)+[g(a)−g(c−r)] ≤ g(a)+h(c) = fg,h,r(a)+fg,h,r(c).

Since g is concave, we have g(r) + g(a+ b − r) ≤ g(a) + g(b), which
yields

fg,h,r(c) ≤ g(r) + g(c − r) ≤ g(r) + g(a+ b − r) ≤ fg,h,r(a) + fg,h,r(b).

b) Suppose that a ∈ [0, r), and b, c ∈ [r,+∞). Since (r, b, c) is a triangle
triplet, we obtain

fg,h,r(a) ≤ g(r) = h(r) ≤ h(b) + h(c) = fg,h,r(b) + fg,h,r(c).

Since |h(b)− h(c)| ≤ g(|b − c|), we have

fg,h,r(b) = h(b) ≤ g(c − b) + h(c) ≤ g(a) + h(c) = fg,h,r(a) + fg,h,r(c),

and

fg,h,r(c) = h(c) ≤ g(c − b) + h(b) ≤ g(a) + h(b) = fg,h,r(a) + fg,h,r(b).
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Now, we begin with the following definition. Given a point x of a metric
space (X, d) and a positive real number ε, the closed ball with the center x
and radius ε is the set

Bd[x; ε] = {y ∈ X ; d(x, y) ≤ ε}.

It is well known that there is a complete metric space with the following
property:

(1)
There is a monotone sequence of closed balls

with empty intersection.

In [32] it is shown that the metric space (R, ef ) has the property (1),
where f is the function of J̊uza (see Example 1). The proof of (1) is based
on the following property of the metric space (R, ef ):

(2)
For each compact set K there is a closed ball Bef

[x; ε] and there is

a compact set L such that K ⊂ R − Bef
[x; ε] ⊂ L.

Theorem 1. (See [23].) Let f be a metric preserving function. Suppose
that there are functions g, h : [0,+∞) → [0,+∞) such that g and h are
nonincreasing, and
they are not constant in each neighborhood of the point +∞, (3)
g(x) ≤ f(x) ≤ h(x) in some neighborhood of the point +∞, (4)
limx→+∞ g(x) = limx→+∞ h(x). (5)
Then the metric space (R, ef ) has the property (2).

Proof. Let m ∈ N be such that g(x) ≤ f(x) ≤ h(x) for each x ∈ [m,+∞).
Put d = limx→+∞ g(x). Evidently d = limx→+∞ f(x) > 0. Let K be a
compact set. Put

s = infK − m, r = supK − s, ε = g(r).

Since g is not constant on (r,+∞), there is ξ > r such that g(ξ) 6= ε.
Since g is nonincreasing, we have ε 6= g(ξ) ≤ g(r) = ε. Therefore g(ξ) < ε.
Since g is nonincreasing for each x ≥ ξ we get g(x) ≤ g(ξ). Thus

d = lim
x→+∞

g(x) ≤ g(ξ) < ε.
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Let x ∈ [m, r]. Then f(x) ≥ g(x) ≥ g(r) = ε. Therefore

(6) ∀x ∈ [m, r] : f(x) ≥ ε.

Let δ ∈ (d, ε). Since limx→+∞ h(x) = d < ε, there is t > r such that
h(t) < δ. Let x ≥ t. Then f(x) ≤ h(x) ≤ h(t) < δ. Thus

(7) ∀x ∈ [t,+∞) : f(x) < δ.

Let S be a closed ball with the centre s and the radius δ. Put L = [s−t, s+t].
Now, we shall show thatK ⊂ R−S. Let u ∈ K. Then |u−s| = u−s ∈ [m, r],
and by (6) we get ef(u, s) = f(|u − s|) ≥ ε > δ. Therefore u /∈ S. Finally,
we shall show that R−S ⊂ L. Let v ∈ R−S. Then f(|v−s|) = ef (v, s) > δ.
By (7) we have |v − s| < t. Therefore v ∈ L.

Example 2. Define f : [0,+∞)→ [0,+∞) as follows (see Figure 10):

Figure 10
0

f(x) =







x if x ∈ [0, 1),

1 + x+ sin2(x − 1)

2x
if x ∈ [1,+∞).
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It is not difficult to verify that f is metric preserving and the metric space
(R, ef ) has the property (2) (which yields also the property (1) ), however
f is not monotone on every neighborhood of the point +∞.

Example 3. Define f : [0,+∞)→ [0,+∞) as follows (see Fig. 11):

f(x)=x if x∈[0,1], and

f(x)= 12 ·
(

x−3n+1−|x−3n+1|+|x−3n+ 12+
1

n+2 |+|x−3n−
1
2−

1
n+2 |

)

,

if x∈(3n−2,3n+1] (n∈N).

It is not difficult to verify that f is metric preserving and (R, ef ) is a metric
space with the property (1), which has not the property (2).
Indeed, the intersection of the sequence of closed balls Bef

[xn; εn] with the

center xn = 3 · (2
n−1 − 1) and the radius εn =

1
2 +

1
2n+1 is empty.

Figure 11

a1

a2
a3
a4

A characterization of metric preserving functions f such that the space
(R, ef ) has the property (1) remains an open question.
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6. Metric preserving functions and periodicity

The examples given in the previous chapter show, in particular, that
metric preserving functions need not be nondecreasing. I. Pokorný [49] has
isolated a fairly natural class of amenable functions for which all metric
preserving functions must be nondecreasing. Define

G ={f ∈ O; there is a periodic function g

such that ∀x ≥ 0 : f(x) = x+ g(x)}.

Examples of such metric preserving functions are x 7→ x + | sin(x)| (see

Fig. 12) and x 7→ bxc+
√

x − bxc (see Fig. 13); where x 7→ bxc is the floor
function, which returns the largest integer not greater than its argument.

y=x+| sin(x)|

Figure 12

0 π

π

We denote by ι the identity function on [0,+∞) (i.e. ι(x) = x for each
x ≥ 0). The previous two metric preserving functions have the following
property

(∗) f − ι is periodic and nonconstant.

It is easy to see that f : [0,+∞) → [0,+∞) is subadditive iff f − ι is
subadditive.
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y=bxc+
√

x−bxc

Figure 13

0 1

1

Lemma 1. (See [7].) Let f be metric preserving, k > 0. If in each neigh-
borhood of 0 there is a point a such that f(a) = ka, then f(x) = kx holds
in a suitable neighborhood of 0.

Proof. Let h > 0 be such that f(h) = kh. We shall show that f(x) = kx for
each x ∈ [0, h]. Assume that f(x) 6= kx for some x ∈ (0, h). We distinguish
two cases.

1) Suppose that f(x) > kx. Put

A = {y ∈ [0,+∞) : f(y) = ky}.

Since f is continuous (by Theorem 3.1), the set A ∩ [0, x] is closed
and bounded. Put M = max(A ∩ [0, x]). Let y ∈ A be such that
0 < y < x − M . Then

f(M + y) ≤ f(M) + f(y) = kM + ky = k(M + y).

Since f(x) > kx and since f is continuous, there is z ∈ [M + y, x]
such that f(z) = kz, which contradicts the definition of M .
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2) Suppose that f(x) < kx. Evidently the set A ∩ [x, h] is closed
and bounded. Put m = min(A ∩ [x, h]). Let r ∈ A be such that
0 < r < m − x. Then

km = f(m) ≤ f(m − r) + f(r) = f(m − r) + kr,

which yields f(m− r) ≥ km− kr = k(m− r). Since f(x) < kx and
f is continuous, there is s ∈ [z, m − r] such that f(s) = ks, which
contradicts the definition of m.

Lemma 2. Let f ∈ G be metric preserving, f 6= ι. Then f − ι has the
smallest period.

Proof. Put g = f − ι. Suppose there does not exist the smallest period of
g. By Lemma 1 there is a neighbourhood U of 0 on which f(x) = x and
hence g(x) = 0 on U . Then from periodicity of g it follows that g ≡ 0.
Proposition 1. Let f ∈ G be metric preserving. Then f is nondecreasing.

Proof. Put g = f − ι. Denote by p the smallest period of g. First we show
that f is nondecreasing on (0, p). We prove it by contradiction. Suppose
that there are x1, x2 ∈ (0, p) such that x1 < x2 and f(x1) > f(x2). Let
a = x1 + p, b = p and c = x2. Then (a, b, c) is a triangle triplet and by
Theorem 2.1

f(a) ≤ f(b) + f(c) = f(p) + f(x2) = p+ f(x2) <

< p+ f(x1) = p+ x1 + g(x1) =

= x1 + p+ g(x1 + p) = f(x1 + p) = f(a),

a contradiction.
Since for each k ∈ N and x ∈ (0, p) we have

f(x+ kp) = x+ kp+ g(x+ kp) = x+ kp+ g(x) = f(x) + kp,

the function f is nondecreasing on [0,+∞).
As an immediate corollary we obtain

Theorem 1. (See [49].) f ∈ G is metric preserving iff f is nondecreasing
and subadditive.
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Lemma 3. Let f ∈ G be metric preserving, f 6= ι. Then f(x) ≥ x for all
x ∈ [0, p), where p is the smallest period of f − ι.

Proof. By contradiction. Suppose that there is a ∈ (0, p) such that
f(a) < a. Then a − f(a) > 0 and there is k ∈ N such that

(1) k · (a − f(a)) > p.

Let ` ∈ N be such that ` · p ≤ k · a < (`+ 1) · p. Then

(2) 0 ≤ ka − p` < p.

Put g = f − ι. Acording to subadditivity of g and the inequalities (2), (1)
we have:

f(ka − p`) = (ka − p`) + g(ka − p`) =

= (ka − p`) + g(ka) ≤
≤ (ka − p`) + k · g(a) =
= (ka − p`) + k · (f(a)− a) < p − p = 0,

i.e., f(ka − p`) < 0, a contradiction.

Lemma 4. Let f ∈ G be metric preserving, f 6= ι. Put g = f − ι. Suppose
that there are relatively prime positive integers m, n such that g

(
m
n
· p
)
= 0,

where p is the smallest period of g. Then for each i ∈ N we have

g

(
i

n
· p
)

= 0.

Proof. Let k, ` ∈ N such that k · m = ` · n+ 1. Then by subadditivity of g
we have

0 = g
(

k · m

n
· p
)

= g

(
` · n+ 1

n
· p
)

= g
(

` · p+ p

n

)

= g
( p

n

)

.

By subadditivity of g we obtain g
(
i · p

n

)
= 0 for every i ∈ N.
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Theorem 2. (See [49].) Let f ∈ G be metric preserving, f 6= ι. Put
g = f − ι. Then g(x) > 0 for every x ∈ (0, p), where p is the smallest period
of g.

Proof. By contradiction. Suppose that there is a ∈ (0, p) such that
g(a) = 0.

1) Suppose that there are relatively prime positive integers m, n such
that a = m

n
· p. By Lemma 4 we have g

(
p
n

)
= 0. Let x ∈ (0, p

n
) and

let k ∈ N ∩ (1, n). Then from subadditivity of g we obtain

g(x) = g(x) + g
(

k · p

n

)

≥ g
(

x+ k · p

n

)

= g
(

x+ k · p

n

)

+

+ g
(

(n − k) · p

n

)

≥ g
(

x+ k · p

n
+ (n − k) · p

n

)

=

= g(x+ p) = g(x).

Therefore g
(
x+ k · p

n

)
= g(x) which shows that p

n
is a period of g.

This contradicts the definition of p.

2) Suppose that
a

p
is irrational. It is well-known that for arbitrary

irrational number x the set {k · x− bk · xc; k ∈ N} is dense in [0, 1].
Put

A =
{

k · a
p
−
⌊

k · a
p

⌋

; k ∈ N

}

.

Then the set B = p ·A = {p · x; x ∈ A} is dense in [0, p]. Therefore
g(x) = 0 for every x ∈ B (since x = k ·a− ` ·p for suitable k, ` ∈ N).
By Lemma 1 there is a neighbourhood U of 0 such that f ≡ ι on U ,
i.e. g ≡ 0 on U . Choose relatively prime positive integers m, n such
that m

n
· p ∈ (0, p) ∩ U (which evidently yields g(m

n
· p) = 0). But

such case was discussed in the previous part of this proof.
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7. Metric preserving functions and differentiability

Mirroring the situation for continuity, the notion of differentiability par-
titions the class of metric preserving functions into two rather different sub-
classes, and the assignment of a given metric preserving function to one of
these subclasses is determined by the value of its derivative at 0 (of course,
there is a one-sided derivative at 0 only). As we shall see, for such functions,
the (extended) derivative always exists at 0; the central question becomes
whether the derivative is finite or infinite. Those with finite derivative form
a well-behaved class of continuous functions that are differentiable almost
everywhere; those with infinite derivative, by contrast, can be very unruly:
they can be continuous, nowhere differentiable (in the finite sense), and
even, as we saw in Chapter 2, nowhere continuous.

Lemma 1. (See [60].) Let f ∈ O be a differentiable function. If f is metric
preserving, then the following conditions are fulfilled:

(1) f ′(x) ≤ f ′(0) for all x ∈ [0,+∞).
(2) f ′(0) > 0.

Proof. Fix x ∈ [0,+∞). Subadditivity ensures that for all h > 0,

f(x+ h)− f(x)

h
≤ f(h)− f(0)

h
.

For h → 0 we get f ′(x) ≤ f ′(0).
Assume now f ′(0) ≤ 0. Then the already proved condition (1) implies

f ′(x) ≤ 0 for all x ∈ [0,+∞), thus f is decreasing, hence f(x) ≤ f(0) = 0,
a contradiction.

Proposition 1. (See [60].) Let f be metric preserving. If f is differentiable
over (u,+∞) for some u ≥ 0 and lim

x→+∞
f ′(x) = +∞, then f is not metric

preserving.

Proof. Fix m > u. Subadditivity ensures that for all x > m,

f(x+m)− f(x)

m
≤ f(m)

m
.

Now use the Mean Value Theorem to show that for arbitrary large x, there

exists x0 ∈ (x, x +m) such that f ′(x0) ≤ f(m)
m
.
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The following example shows that the assumption

lim
x→+∞

f ′(x) = +∞

in Proposition 1 cannot be replaced by

lim sup
x→+∞

f ′(x) = +∞.

Example 1. (See [7].) There is a metric preserving function f such that
(see Fig. 14)

(3) f is continuous,
(4) f is differentiable on (0,+∞),
(5) lim sup

x→+∞
f ′(x) = +∞.

Put f =
∞∑

n=1
fn, where an = 1−

√
1− 2−2n, and fn : [0,+∞)→ [0,+∞),

fn(x)=

����� ����
(2nan)

−1·
√
2anx−x2, if x∈[0,an],

2−n−1[3+cos( 2(x−n−1)
an

)], if x∈[n+1−π
2 an,n+1+π

2 an],

2−n, otherwise.

Figure 14
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Proposition 2. (See [60].) Let f ∈ O be differentiable and let f ′ be con-
tinuous on a certain interval [0, u), u > 0. If f is metric preserving, then
it is increasing on some neighborhood of 0.

Proof. By Lemma 1 we have f ′(0) > 0. Since f ′ is continuous on [0, u),
there is v > 0 such that f ′(x) > 0 on [0, v), hence f is increasing on [0, v).

Example 4.1 shows that there is a metric preserving function f such that
f is differentiable, f ′ is continuous on (0,+∞), and f is not increasing on
each neighborhood of 0. Therefore this example shows that the assumption

f is continuous on a certain interval [0, u), u > 0

in Proposition 2 is essential.

Now we show that for each metric preserving function f , f ′(0) exists in
the extended sense. The proof naturally divides into two parts depending
on whether the following set is empty:

Kf = {k > 0 : f(x) ≤ kx for all x ≥ 0}.

In the course of the proof, we show that f ′(0) < +∞ iff Kf 6= ∅, and
f ′(0) = +∞ iff Kf = ∅.
Lemma 2. (See [7].) If f is metric preserving, then for all x, y > 0 we
have

x ≥ y ⇒ f(x)

x
≤ 2 · f(y)

y
.

Proof. Let 0 < x ≤ y. Choose a positive integer n such that

2n−1 ≤ xy−1 < 2n.

Since 21−nx < 2y, by Corollary 2.1 f(21−nx) ≤ 2f(y). By Lemma 4.1 we
have 21−nf(x) ≤ f(21−nx). Thus

f(x) ≤ 2n−1f(21−nx) ≤ 2n−12f(y) ≤ xy−12f(y).

We can now prove that f ′(0) exists and is infinite when Kf = ∅. Let n be
a positive integer. Since Kf = ∅, we can pick y > 0 such that f(y) ≥ 2ny.
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Let x ∈ (0, y]. By Lemma 2, 2n ≤ f(y)
y

≤ 2 f(x)
x
. But now we have shown

that for each integer n > 0, there is y > 0 such that if 0 < x ≤ y, f(x)
x

≥ n,
as required.
We turn to the case in which Kf 6= ∅. We prove that f ′(0) exists and is

finite in this case. By Theorem 3.1, f is continuous, whence Kf is closed.
Let k0 = minKf . We show

(6) k0 = lim
x→0

f(x)

x
.

Let ε > 0. Then, by the choice of k0,

(7) ∀h > 0 ∃x ∈ (0, h] : f(x) > (k0 − ε)x.

We show that

(8) ∃h > 0 ∀x ∈ (0, h] : f(x) > (k0 − ε)x.

Assume instead that

(9) ∀h > 0 ∃x ∈ (0, h] : f(x) ≤ (k0 − ε)x.

Let h > 0. By the formula (7), there is x1 ∈ (0, h] such that

f(x1) > (k0 − ε)x1,

and by (9), there is x2 ∈ (0, h] such that f(x2) ≤ (k0 − ε)x2. By the conti-
nuity of f , there is x3 ∈ (0, h] such that f(x3) = (k0− ε)x3. By Lemma 6.1,
f(x) = (k0 − ε)x holds on some neighborhood of 0, contradicting (7). This
proves (8).
Now since k0 ∈ Kf , we also have f(x) < (k0 + ε)x for each x > 0. Thus,

combining these results, we obtain

∀ε > 0 ∃h > 0 ∀x ∈ (0, h] : k0 − ε <
f(x)

x
< k0 + ε;

that is, (6) holds, as required.
We have proved the following
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Theorem 1. (See [7].) For every metric preserving function f , f ′(0) always
exists (in the extended sense) and f ′(0) = infKf . (We put inf ∅ = +∞.)
Given k > 0, we say that a function f ∈ O is of k-bounded gradient at 0

if there is h > 0 such for all x ∈ [0, h], f(x) ≤ kx. We say that f is of
bounded gradient at 0 if for some k > 0, f is of k-bounded gradient at 0.
(See [62].)

Lemma 3. (See [7].) Suppose k > 0 and f is metric preserving and of
k-bounded gradient at 0. Then

(10) ∀x ∈ [0,+∞) : f(x) ≤ kx, and
(11) ∀x, y ∈ [0,+∞) : |f(x)− f(y)| ≤ k · |x − y|.

Proof. Let x ∈ [0,+∞). Let n be a positive integer such that 2−nx ≤ h.
By Lemma 4.1 2−nf(x) ≤ f(2−nx) ≤ k · 2−nx, which yields (10). Observe
that (11) follows from Proposition 3.1 and (10).

If f ′(0) < +∞, then f is a Lipschitz mapping with the Lipschitz con-
stant f ′(0) (which yields that f is differentiable almost everywhere), as the
following theorem shows.

Theorem 2. Let f be a metric preserving function with f ′(0) < +∞. Then
(12) ∀x ∈ [0,+∞) : f(x) ≤ f ′(0) · x, and
(13) ∀x, y ∈ [0,+∞) : |f(x)− f(y)| ≤ f ′(0) · |x − y|.

Proof. Let ε > 0. Then there is h > 0 such that f(x) ≤ (f ′(0) + ε) · x for
each x ∈ [0, h]. By Lemma 3 f(x) ≤ (f ′(0) + ε) · x for each x ∈ [0,+∞).
Since ε > 0 was arbitrary, (12) holds. Observe that (13) follows from
Proposition 3.1 and (12).

Corollary 1. Suppose f is metric preserving and f ′(0) < +∞. If the
extended derivative of f exists at each x ∈ [0,+∞), then |f ′(x)| ≤ f ′(0) for
each x ∈ [0,+∞).
The proof of Theorem 2 shows that if f is a metric preserving function

and f ′(0) < +∞, then f is of bounded gradient at 0. The converse is also
true, and follows immediately from Theorem 1. Thus:

Corollary 2. For metric preserving functions f , f ′(0) < +∞ iff f is of
bounded gradient at 0.

Our target theorem follows directly from Theorem 2.
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Theorem 3. Suppose f is metric preserving and f ′(0) < +∞. Then f is
of bounded variation over each closed interval lying in [0,+∞).

Finally, we consider the subclass of metric preserving functions f such
that f ′(0) = +∞. As we mentioned before, the most pathological examples
are possible in this case. In contrast with Theorem 2 we will construct
a continuous metric preserving function which is nowhere differentiable.
This function is a slight modification of the Van der Waerden’s continuous
nowhere differentiable function. (See [3].)

Example 2. (See [22].) Define h : [0,+∞) → [0,+∞) as follows (see
Fig. 15)

h(x) =

{
x, if x ≤ 1

2 ,
1
2 + |x − bxc − 1

2 |, if x > 1
2 .

Define f : [0,+∞)→ [0,+∞) as follows

f(x) =
∞∑

n=0

2−nh(2nx) for each x ∈ [0,+∞).

The proof that f is continuous and nowhere differentiable is essentially the
same as Van der Waerden’s. It is not difficult to verify that f is metric
preserving.
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Figure 15

y = h(x)

We close this section by considering a question raised by the authors in
[22] regarding metric preserving functions:

It is possible to characterize the set f ′−1(+∞) ?
By Corollary 1 the question is relevant only to the case we are currently
considering, where f ′(0) = +∞.
The following example shows that there is a monotone continuous metric

preserving function f for which

f ′−1(+∞) = {0} ∪ {2−n : n ∈ N}.
Example 3. (See [22].) There is a metric preserving function f such that

(14) f is continuous and nondecreasing,
(15) f ′(x) exists for each x ∈ [0,+∞) (finite or infinite),
(16) f ′(2−n) = +∞ for each n ∈ N.

Define g : [0,+∞)→ [0,+∞) as follows

g(x) =

{ √
2x − x2, if x ∈ [0, 1),
1, if x ∈ [1,+∞).
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Evidently g is nondecreasing and concave. Define h : [0,+∞)→ [0,+∞) as
follows

h(x) =







0, if x = 0,

1, if x ∈ (0, 1),
1
2 · [3− g(2− x)], if x ∈ [1, 2),
1
2 · [3 + g(x − 2)], if x ∈ [2,+∞).

Since for all x > 0 we have 1 ≤ h(x) ≤ 2, by Proposition 2.4 h is met-
ric preserving. We shall show that the assumptions of Propositon 5.2 are
fulfiled.
Let x, y ∈ [1,+∞), |x − y| ≤ 1. We distinguish three cases.
a) Suppose that 1 ≤ x ≤ y < 2. Since 2 − x = (2 − y) + (y − x),
we have g(2 − x) ≤ g(2 − y) + g(y − x). Thus |h(x) − h(y)| =
1
2 · [g(2− x)− g(2− y)] ≤ 1

2 · g(y − x) ≤ g(|x − y|).
b) Suppose that 1 ≤ x < 2 ≤ y. Since g is nondecreasing, we obtain

g(2−x) ≤ g(y−x) and g(y−2) ≤ g(y−x). Therefore |h(x)−h(y)| =
1
2 · [g(2− x) + g(y − 2)] ≤ 1

2 · [g(y − x) + g(y − x)] = g(|x − y|).
c) Suppose that 2 ≤ x ≤ y. Since y − 2 = (y − x) + (x − 2), we have

g(y − 2) ≤ g(y − x) + g(x− 2). Thus |h(x)− h(y)| = 1
2 · [g(y − 2)−

g(x − 2)] ≤ 1
2 · g(y − x) ≤ g(|x − y|).

Define w : [0,+∞)→ [0,+∞) as follows (see Fig. 16)

w(x) =

{
g(x), if x ∈ [0, 1),
h(x), if x ∈ [1,+∞).

By Proposition 5.2 w is metric preserving. It is not difficult to verify that

• w is continuous and nondecreasing,

• w(x) ≤ 2 for each x ∈ [0,+∞),
• w(x) = 2 for each x ≥ 3,
• w′(x) exists for each x ∈ [0,+∞) (finite or infinite),
• w′(2) = +∞.

Define f : [0,+∞)→ [0,+∞) as

f(x) =

∞∑

n=0

2−nw(2nx) for each x ∈ [0,+∞).



Chapter 7 43

It is not difficult to verify that (14)–(16) hold.

Figure 16

y = w(x)

R. W. Vallin [65] generalizes this considerably by showing that for each
Gδ measure zero set Z there is a continuous metric preserving function f
such that

f ′−1(+∞) = {0} ∪ Z.

Vallin’sargument is technically interesting. As a starting point, he uses the
following result mentioned in [10]:

Lemma 4. Suppose Z ⊂ [0, 1] is a Gδ set of measure zero. Then there is an
absolutely continuous function g defined on [0, 1] such that g′−1(+∞) = Z
and g′(x) ≥ 1 for all x ∈ [0, 1]− Z.

Vallin’s task is to modify the g of Lemma 4 so that it retains the properties
in the lemma but becomes metric preserving. First he replaced g by f
defined by

f(x) =

{
0, if x = 0,
2
π
· arctan(g(x)) + 1, if x ∈ (0, 1].
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Then

1. f is metric preserving,
2. f ′ exists (in the extended sense) at all x, and
3. f ′−1(+∞) = {0} ∪ Z.

This function is, however, not continuous at the origin. Vallin’s next goal is
to construct a metric preserving function with infinite derivative on {0}∪Z
which is continuous on all of [0, 1]. To build the required function, he makes
use of the technique described in Proposition 5.2.
Let g be the function from Lemma 4 which is absolutely continuous on

[0, 1] and

g′(x) = +∞ for x ∈ Z, while

g′(x) exists and is finite for x /∈ Z.

Define ĝ(x) = 2
π
arctan(g(x)) + 1. On [0, 1], this ĝ is not just continuous,

but uniformly continuous. So we can rate at which ĝ′(x) becomes infinite
on {0} ∪ Z. Since ĝ is uniformly continuous, for each n ∈ N there exists a
δn > 0 such that for all x ∈ [0, 1]

if |x − y| < δn then |ĝ(x) − ĝ(y)| ≤ 2−n.

Now for small h values there is an n such that h ∈ [δn+1, δn) and so

1
h
· [ ĝ(x+ h)− ĝ(x)] ≤ 1/(2nδn+1)

for each x ∈ [0, 1].
Let s : [0, 1] → [0, 1] be an increasing, differentiable, concave function

such that s(0) = 0 and for all n

s(δn)

δn

≥ 1/(2nδn+1).

Using this s we can construct a sequence of continuous, differentiable metric
preserving functions fn.
Start with (an)n∈N, a sequence of points not in Z converging to zero. For

each n find the point bn such that s(bn) = ĝ(an). If bn > 1
2an define

fn(x) =







s(2bnx/an) on [0, an/2],

t(x) on [an/2, an],

ĝ(x) on [an, 1],
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where t is a differentiable spline with range [1, 2] satisfying

|t(x)− t(y)| ≤ s
(
2bn

an
|x − y|

)

for |x − y| ≤ an/2.

If bn ≤ an/2 let

fn(x) =







s(x) on [0, bn],

t(x) on [bn, an],

ĝ(x) on [an, 1],

where again t is a differentiable spline with range [1, 2] now satisfying

|t(x)− t(y)| ≤ s(|x − y|) for |x − y| ≤ bn.

From Proposition 5.2 each fn is metric preserving and f ′
n(x) = +∞ on

{0} ∪ ([an, 1] ∩ Z). Last, define

f(x) =

∞∑

n=1

2−nfn(x).

Vallin’s function f has domain [0, 1]; to be truly metric preserving, the
domain needs to be [0,+∞). This is easily accomplished by replacing f by
f(h) where h(x) = x

1+x
, restricted to [0,+∞). (See Corollary 0.2.)
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8. The standard Cantor function is metric preserving

The usual definition of the standard Cantor function (”the devil’s stair-
case”) involves the classic middle-thirds description of the standard Cantor
set. (See [16] and [52].) We offer an alternate definition of this function.

Define a sequence of functions φn : R −→ [0, 1] by

φ0(x) =







0 if x ≤ 0
x if 0 ≤ x ≤ 1
1 if x ≥ 1

φn+1(x) =

{ 1
2 · φn(3x) if x ≤ 2

3

1
2 +

1
2 · φn(3x − 2) if x ≥ 1

3

It is easy to check that each φn is non-decreasing, that φn(x) = 0 for all
x ≤ 0, that φn(x) = 1 for all x ≥ 1, and that the two lines in the definition
of φn+1 agree in the overlap of their domains, both giving φn+1(x) =

1
2

when 13 ≤ x ≤ 2
3 .

Put φ = limn→+∞ φn.

Figure 17

0

y = φ(x)

It is not difficult to verify that the restriction of φ to [0, 1] is the stan-
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dard Cantor function ϕ. (See Fig. 17.) The functions φn are polygonal
approximations of φ.
W. Sierpiński in 1911 gave the following characterization of the standard

Cantor function (using a system of three functional equations).

Proposition 1. (See [57].) There is a unique function ϕ : [0, 1] → [0, 1]
which satisfies for each t ∈ [0, 1] the equations

ϕ
(

t
3

)
= ϕ(t)

2 , ϕ
(

t+1
3

)
= 1
2 , ϕ

(
t+2
3

)
= 1
2 +

ϕ(t)
2 .

This function is continuous, increasing, and possesses a dense set of inter-
vals of constancy.

Proposition 2. (See [13].) There is a unique function ϕ : [0, 1] → [0, 1]
satisfying the conditions:

ϕ(x) = 1/2 for x ∈ [ 13 , 23 ],
ϕ(x) = 2ϕ

(
x
3

)
for x ∈ [0, 1],

ϕ(x) = 1− ϕ(1− x) for x ∈ [0, 1].

Theorem 1. The standard Cantor function is subadditive.

Proof. The function φ is the pointwise limit of the functions φn as n → +∞.
So to prove the subadditivity of φ, it suffices to prove the subadditivity of
all φn, which we do by induction on n. The case n = 0 is trivial, so we
proceed to the induction step from n to n + 1. Let x, y ∈ R, x ≥ y. Here
we consider several cases.
Case 1: y ≤ 0. This case is trivial as fn+1 is monotone.
Case 2: y ≥ 1

3 . In this case,

φn+1(x + y) ≤ 1 = 1
2 +

1
2 ≤ φn+1(x) + φn+1(y).

Case 3: x ≤ 1
3 . As x, y and x+ y are all ≤ 2

3 , we have

φn+1(x+ y) = 1
2 · φn(3x+ 3y) ≤

≤ 1
2 · φn(3x) +

1
2 · φn(3y) = φn+1(x) + φn+1(y).

Case 4: 0 ≤ y ≤ 1
3 ≤ x. As x+ y ≥ 1

3 , we have

φn+1(x + y) = 1
2 +

1
2 · φn(3x+ 3y − 2) ≤

≤ 1
2 +

1
2 · φn(3x − 2) + 12 · φn(3y) = φn+1(x) + φn+1(y).

These four cases exhaust all the posibilities, so the proof is complete.
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Corollary 1. The standard Cantor function is metric preserving.

Remark. It is not difficult to verify that x 7→ φ(x)
x
is not nonincreasing on

(0,+∞).
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9. Metric preserving functions of several variables

There is a natural way of introducing an algebraic structure on a product
of algebraic structures of the same type. For example, if (A,⊕) and (B,⊗)
are groups, then (A × B,�), where (a1, b1)� (a2, b2) = (a1 ⊕ a2, b1 ⊗ b2) is
a group as well. The application of this method to metric spaces yields a
mapping which is not a metric.

Let (M1, d1), (M2, d2) be metric spaces. It is well known that d1 + d2,√

d21 + d22, max(d1, d2) are metrics on M1 × M2. In these cases we obtain
new metrics as composite functions of the real functions (x, y) 7→ x + y,

(x, y) 7→
√

x2 + y2, and (x, y) 7→ max(x, y), respectively, with the ”vector
metric”

d : (M1 × M2)
2 → [0,+∞)2, where d((p, q), (r, s)) = (d1(p, r), d2(q, s)).

We can describe these cases by the following diagram

(M1 × M2)
2 [0,+∞)2

[0,+∞)

d

f(d)
f

....................................................................................... ........

............................................................................................................................. ........

........................................................................
.
.......
.

where f is a suitable function of two variables.

We shall generalize this idea.

Let T be a nonempty set of indices. Consider the indexed family
{(Mt, dt)}t∈T of metric spaces. Define d : (

∏

t∈T

Mt)
2 → [0,+∞)T as follows

d((xt)t∈T , (yt)t∈T ) = (dt(xt, yt))t∈T .

We say that f : [0,+∞)T → [0,+∞) is a metric preserving function if for
each indexed family {(Mt, dt)}t∈T of metric spaces the composite function
f(d) is a metric on the set

∏

t∈T

Mt.
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(
∏

t∈T

Mt)
2 [0,+∞)T

[0,+∞)

d

f(d)
f

....................................................................................... ........

............................................................................................................................. ........

........................................................................
.
.......
.

Let us begin by recalling that a function f : X → [0,+∞) is said to be
subadditive if it satisfies the inequality f(x + y) ≤ f(x) + f(y) whenever
x, y ∈ X , where X is an additive monoid.

Let us recall that a function f : [0,+∞)T → [0,+∞) is called isotone iff
f(x) ≤ f(y) whenever 0 ≤ xt ≤ yt for each t ∈ T.

The following sufficient condition is a generalization of Theorem 1.1.

Theorem 1. (See [46].) If f : [0,+∞)T → [0,+∞) is an isotone, sub-
additive function vanishing exactly at the constant zero function, then it is
metric preserving.

Suppose [0,+∞)T is ordered coordinate-wise, i.e.
x ≤T y iff x(t) ≤ y(t) for each t ∈ T ;

x <T y iff x(y) < y(t) for each t ∈ T.

Define a function ΘT : T → [0,+∞) by ΘT (t) = 0 for each t ∈ T .

Proposition 1. Let f : [0,+∞)T → [0,+∞) be such that
(i) f(ΘT ) = 0,
(ii) ∃a > 0 ∀x ∈ [0,+∞)T , x 6= ΘT : a ≤ f(x) ≤ 2a.

Then f is metric preserving.

The following Theorem gives a characterization of metric preserving func-
tions. (See [5].)

Theorem 2. Let f : [0,+∞)T → [0,+∞). Then f is metric preserving iff
it is a function vanishing exactly at the constant zero function and it has
the following property

if (at, bt, ct) is a triangle triplet for each t ∈ T,

then (f((at)t∈T ), f((bt)t∈T ), f((ct)t∈T )) is a triangle triplet.
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Corollary 1. Let f : [0,+∞)T → [0,+∞) be metric preserving. Then for
all x, y ∈ [0,+∞)T we have

(∀t ∈ T : x(t) ≤ 2y(t) )⇒ f(x) ≤ 2f(y).

Theorem 3. Let f : [0,+∞)T → [0,+∞) be metric preserving. Then
f is continuous iff f is continuous at the point ΘT .

Proof. Let ε > 0. Then there is an open neighborhood U of the point ΘT

(in the product topology) such that for each x ∈ U we have f(x) < ε. Let
V ⊂ U be a base element such that ΘT ∈ V , i.e. there is a nonempty finite
subset F of T such that

V =
⋂

t∈F

π−1
t ([0, γt)),

where γt > 0, and πt is the projection from [0,+∞)T into [0,+∞), i.e.
πt(x) = x(t) for each x ∈ [0,+∞)T .
Put γ = min

t∈F
γt. Since

⋂

t∈F

π−1
t ([0, γ)) ⊂ V , for each x ∈ [0,+∞)T we

have
(∀t ∈ F : x(t) < γ)⇒ f(x) < ε.

Let x ∈ [0,+∞)T , x 6= ΘT . Put δ = γ/2.
Let y ∈ [0,+∞)T be such that for each t ∈ F

|x(t)− y(t)| < δ.

Define z : T → [0,+∞) by

z(t) =

{
min(δ, x(t) + y(t)), for t ∈ F,

x(t) + y(t), for t ∈ T − F.

Evidently (x(t), y(t), z(t)) is a triangle triplet for each t ∈ T . Since z(t) < γ
for each t ∈ F , we obtain

|f(x)− f(y)| ≤ f(z) < ε.

This shows that f is continuous at the point x.
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Lemma 1. Let f : [0,+∞)T → [0,+∞) be metric preserving. If f is
continuous, then

∀ε > 0 ∃x ∈ [0,+∞)T , ΘT <T x : f(x) < ε.

Proof. Let ε > 0. Since f is continuous at the point ΘT , there is a neigh-
bourhood U of ΘT (in the product topology) such that for all x ∈ U we
have f(x) < ε. Then there are δ > 0 and a nonempty finite subset F of T
such that ⋂

t∈F

π−1
t ([0, δ)) ⊂ U.

Define a function x : T → [0,+∞) by x(t) = δ/2 for each t ∈ T .
Since x ∈ U , we have f(x) < ε.

Proposition 2. Let T be a finite set. Let f : [0,+∞)T → [0,+∞) be
metric preserving. Then f is continuous iff

∀ε > 0 ∃x ∈ [0,+∞)T , ΘT <T x : f(x) < ε.

Proof. Let ε > 0. Then there is a ∈ [0,+∞)T such that ΘT <T a and
f(a) < ε/2. Put

U =
⋂

t∈T

π−1
t ([0,min

t∈T
a(t))).

By Corollary 1 for all x ∈ U we obtain f(x) ≤ 2f(a) < ε, therefore f is
continuous at the point ΘT .

The following example shows that the assumption ”ΘT <T x” in Propo-
sition 2 cannot be replaced by the assumption ”x 6= ΘT”.

Example 1. Let f : [0,+∞)2 → [0,+∞) be defined as follows:

f(x, y) =

{
min(1, y) for x = 0,

1 for x 6= 0.
Then f is metric preserving and discontinuous, but

∀ε > 0 ∃x ∈ [0,+∞)2, x 6= Θ2 : f(x) < ε

(for example x = (0,min( 12 ,
ε
2 ) ).

Corollary 2. Let T be a finite set. Let f be metric preserving. Then f is
discontinuous if and only if

∃η > 0 ∀x ∈ [0,+∞)T , ΘT <T x : f(x) ≥ η.
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10. Metrization of the product topology

Consider an indexed family {(Mt, dt)}t∈T of metric spaces. Denote by
Tu the product topology on

∏

t∈T Mt.

For each metric preserving function f denote by Tf the topology on∏

t∈T Mt generated by the metric f(d). A natural question arises whether
we can investigate metrizability of the product topology Tu by the metric
f(d) = f ◦ d. The results in this section are extracted from [5].

Lemma 1. Let f : [0,+∞)T → [0,+∞) be metric preserving. Then

Tu ⊂ Tf .

Proof. Let t ∈ T . Let Bdt
(xt, ε) be an open ball in the metric space Mt.

Let x ∈ π−1
t (Bdt

(xt, ε)) be such that x(t) = xt (where πt is the projection
from

∏

t∈T Mt into Mt). Define a : T → [0,+∞) by a(t) = 2ε and a(i) = 0
for each i ∈ T − {t}. Put δ = f(a)/2. Let y ∈ Bf(d)(x, δ). Then

f(d(x, y)) < δ = f(a)/2.

By Corollary 9.1 we have

(∀i ∈ T : a(i) ≤ 2di(x(i), y(i)) )⇒ f(a) ≤ 2f(d(x, y)),

or equivalently

f(d(x, y)) < f(a)/2⇒ (∃j ∈ T : dj(x(j), y(j)) < a(j)/2).

By definition of a we obtain j = t, which yields dt(x(t), y(t)) < a(t)/2 = ε,
i.e. y ∈ π−1

t (Bdt
(xt, ε)).

This shows that Tu ⊂ Tf .

Let S ⊂ T be a nonempty set. Define ιS,T : [0,+∞)S → [0,+∞)T by

(ιS,T (a))(x) =

{
a(t), for t ∈ S,

0, for t ∈ T − S,
for each a ∈ [0,+∞)S.

Put H = {t ∈ T : the metric space (Mt, dt) is not discrete}.
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Proposition 1. Let F be a nonempty subset of T such that H ⊂ F and
T −F is finite. Let f : [0,+∞)T → [0,+∞) be metric preserving. If f(ιF,T )
is continuous, then Tu = Tf .

Proof. We show that Tf ⊂ Tu. Let x ∈ ∏t∈T Mt and ε > 0. Since f(ιF,T )
is continuous at the point ΘF , there is a nonempty finite subset K of F and
γ > 0 such that for each y ∈ [0,+∞)F

(∀t ∈ K : y(t) < γ)⇒ f(ιF,T (y)) < ε.

Since T − F is finite, there is β > 0 such that for each t ∈ T − F

Bdt
(x(t), β) = {x(t)}.

Put δ = min(β, γ), L = K ∪ (T − F ), and V =
⋂

t∈L

π−1
t (Bdt

(x(t), δ)). Then
V is a neighborhood of x in the Tu.
It is not difficult to verify that V ⊂ Bf(d)(x, ε).

Corollary 1. Let f : [0,+∞)T → [0,+∞) be a continuous metric preserv-
ing function. Then Tu = Tf .

Put I = {t ∈ T : the metric space (Mt, dt) is bounded}.
Proposition 2. Suppose that H ∩ I is finite. Let f : [0,+∞)T → [0,+∞)
be metric preserving. If Tu = Tf , then f(ιH,T ) is continuous.

Proof. Since f(ιH,T ) : [0,+∞)H → [0,+∞) is metric preserving, it is suffi-
cient to prove that it is continuous at the point ΘH . Let x ∈ ∏t∈T Mt be
such that, for all t ∈ H , x(t) is an accumulation point of the set Mt. Let
ε > 0. Then Bf(d)(x, ε

2 ) ∈ Tf ⊂ Tu, hence

∃K ⊂ T, K 6= ∅ finite ∃γ > 0 :
⋂

t∈K

π−1
t (Bdt

(x(t), γ)) ⊂ Bf(d)(x, ε
2 ).

Let F be a nonempty finite set such that H ∩ (K ∪ I) ⊂ F ⊂ H . Let
t ∈ F . Since x(t) is an accumulation point of Mt, there exists yt ∈ Mt with
0 < dt(x(t), yt) < γ. Put δ = mint∈F dt(x(t), yt). Let z ∈ [0,+∞)H be such
that z ∈ ⋂t∈F π−1

t ([0, δ)). Then

∀t ∈ H − F ∃yt ∈ Mt : z(t) ≤ dt(x(t), yt).

Define a mapping y : T → ⋃

t∈T Mt by y(t) = yt for t ∈ H , y(t) = x(t) for

t ∈ T − H . Then y ∈ ⋂t∈K π−1
t (Bdt

(x(t), γ)) and by Corollary 9.1

(f(ιH,T (z)) ≤ 2f(d(x, y)) < ε.

This shows that f(ιH,T ) is continuous at the point ΘH .
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Corollary 1. Let f : [0,+∞)T → [0,+∞) be metric preserving. In the
case of (Mt, dt) = (R, e) for each t ∈ T (where e is the Euclidean metric),
Tu = Tf iff f is continuous.

Corollary 2. Let T be finite. Let f : [0,+∞)T → [0,+∞) be metric
preserving. Then Tu = Tf iff f(ιH,T ) is continuous.

The following example shows that the assumption ”T is finite” in Corol-
lary 2 cannot be omitted.

Example 1. Consider (for each n ∈ N)Mn = [0, 1/n] with the usual metric
en(u, v) = |u − v|.
Define f : [0,+∞)N → [0,+∞) by f(x) = supn∈N

(min(1, x(n))) for all
x ∈ [0,+∞)N. Then we can verify that f is metric preserving, Tu = Tf but
f is not continuous.

Theorem 1. (See [5].) Let f : [0,+∞)T → [0,+∞) be metric preserving.
Then Tu = Tf iff

∀ ε > 0 ∃ F ⊂ T finite ∃ δ > 0 ∀ α ∈ N
T ∃ a ∈ [0,+∞)T :

∀ t ∈ T − (I ∪ F ) : a(t) ≥ α(t),(i)

∀ t ∈ I − F : a(t) ≥ diamMt,(ii)

∀ t ∈ F ∩ H : a(t) ≥ δ,(iii)

f(a) < ε.(iv)

Proof. Necessity. Choose x ∈ ∏t∈T Mt such that x(t) is an accumulation
point of the set Mt for each t ∈ H . Let ε > 0. Since Tu = Tf ,

∃F ⊂ T, F 6= ∅ finite ∃γ > 0 :
⋂

t∈F

π−1
t (Bdt

(x(t), γ)) ⊂ Bf(d)(x, ε/4).

Let t ∈ F ∩ H . Then there is yt ∈ Mt such that 0 < dt(x(t), yt) < γ. Put

δ =

{
mint∈F∩H dt(x(t), yt), if F ∩ H 6= ∅
1, if F ∩ H = ∅.

Let α ∈ N
T . Let t ∈ T − (I ∪ F ). Then there is yt ∈ Mt such that

dt(x(t), yt) ≥ α(t). Let t ∈ I −F . If diamMt > 0, there exists yt ∈ Mt such
that

dt(x(t), yt) >
1
4 · diamMt.
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If diamMt = 0, put yt = x(t). For each t ∈ F − H put yt = x(t). Define
a mapping y : T → ⋃

t∈T Mt by y(t) = yt for all t ∈ T . Put a = 4d(x, y).
Then

f(a) ≤ 4 · f(d(x, y)) < 4 · ε/4 = ε.

Sufficiency. Let x ∈ ∏t∈T Mt and ε > 0. Then there exists a finite set
F ⊂ T such that

∃δ > 0 ∀α ∈ N
T ∃a ∈ [0,+∞)T :

∀t ∈ T − (I ∪ F ) : a(t) ≥ α(t),(i)

∀t ∈ I − F : a(t) ≥ diamMt,(ii)

∀t ∈ F ∩ H : a(t) ≥ δ,(iii)

f(a) < ε/2.(v)

Since F − H is finite there is γ > 0 such that

∀t ∈ F − H ∀y ∈ Mt, y 6= x(t) : dt(x(t), y) ≥ γ.

Let K be a nonempty finite set such that F ⊂ K ⊂ T . Put

V =
⋂

t∈K

π−1
t (Bdt

(x(t),min(γ, δ))).

Let y ∈ V . Let t ∈ (T − ((I ∪ F )). Then there exists a positive integer nt

such that dt(x(t), y(t)) ≤ nt. Define a mapping α : T → N by

α(t) =

{
nt, for each t ∈ T − (I ∪ F )

1, otherwise.

Then there is a ∈ [0,+∞)T such that (i), (ii), (iii) and (v) hold. It is not
difficult to verify that d(x, y) ≤T a. By Corollary 9.1 we obtain

f(d(x, y)) ≤ 2f(a) < 2 · ε/2 = ε, i.e. y ∈ Bf(d)(x, ε).

This shows that Tf ⊂ Tu.

This Theorem shows that this metrizability depends on boundedness and
discretness of factors only.
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11. Metrization of the product uniformity

Consider an indexed family {(Mt, dt)}t∈T of metric spaces. Denote by
Uu the product uniformity on

∏

t∈T Mt.
For each metric preserving function f denote by Uf the uniformity on∏

t∈T Mt generated by the metric f(d). A natural question arises whether
we can investigate metrizability of the product uniformity Uu by the metric
f(d). The results in this section are extracted from [6].

Lemma 1. Let f : [0,+∞)T → [0,+∞) be metric preserving. Then
Uu ⊂ Uf .

Proof. Let U ∈ Uu. Then there is a finite nonempty subset F of T and
ε > 0 such that ⋂

t∈F

(πt × πt)
−1(d−1t ([0, ε))) ⊂ U.

Define a mapping η : F → [0,+∞)T as follows

(η(t))(i) =

{
2ε, if i = t,

0, otherwise,
for each t ∈ F.

Let t ∈ F . Put δt = f(η(t))/2 and Wt = (f(d))
−1([0, δt)). We show that

Wt ⊂ d−1t ([0, ε)). Let (x, y) ∈ Wt. Then f(d(x, y)) < δt = f(η(t))/2,
therefore by Corollary 9.1 we obtain

dt(x(t), y(t)) < (η(t))(t)/2 = ε.

This shows that
⋂

t∈F Wt ⊂ U . Evidently
⋂

t∈F Wt ∈ Uf .

Proposition 1. Let f : [0,+∞)T → [0,+∞) be metric preserving. Suppose
that f is continuous. Then Uu = Uf .

Proof. Let U ∈ Uf . Then there is ε > 0 such that (f(d))−1([0, ε)) ⊂ U .
Since f is continuous at the point ΘT , there exists a finite nonempty subset
F of T and exists γ > 0 such that

∀a ∈ [0,+∞)T : (∀t ∈ F : a(t) < γ)⇒ f(a) < ε.

Put V =
⋂

t∈F (πt × πt)
−1(d−1t ([0, γ))). Evidently V ∈ Uu. We show that

V ⊂ (f(d))−1([0, ε)).
Let (x, y) ∈ V . Then dt(x(t), y(t)) < γ for all t ∈ F , which yields

f(d(x, y)) < ε.

This shows that V ⊂ U .

Put S = {t ∈ T : the metric space (Mt, dt) is not uniformly discrete}.
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Theorem 1. (See [6].) Let f : [0,+∞)T → [0,+∞) be metric preserving.
Then Uu = Uf iff

∀ ε > 0 ∃ F ⊂ T finite ∃ δ > 0 ∀ α ∈ N
T ∃ a ∈ [0,+∞)T :

∀ t ∈ T − (I ∪ F ) : a(t) ≥ α(t),(i)

∀ t ∈ I − F : a(t) ≥ diamMt,(ii)

∀ t ∈ F ∩ S : a(t) ≥ δ,(iii)

f(a) < ε.(iv)

Proof. Necessity. Let ε > 0. Since Uf ⊂ Uu, we have

(f(d))−1([0, ε/2)) ∈ Uu.

Thus there is a finite nonempty subset F of T and γ > 0 such that

⋂

t∈F

(πt × πt)
−1(d−1t ([0, γ))) ⊂ (f(d))−1([0, ε/2)).

Let t ∈ F ∩ S. Then there are ut, vt ∈ Mt such that

0 < dt(ut, vt) < γ.

Put δ = min{dt(ut, vt) : t ∈ F ∩ S} (in the case of F ∩ S = ∅ let δ > 0 be
arbitrary). Let α ∈ N

T . Let t ∈ T − I. Then there are pt, qt ∈ Mt such that

dt(pt, qt) ≥ α(t).

Put J = {t ∈ I : diamMt > 0}. Let t ∈ J . Then there are rt, st ∈ Mt such
that

dt(rt, st) > 1
2 · diamMt.

Let t ∈ T . SinceMt is a nonempty set, choose an arbitrary element wt ∈ Mt.
Define the mappings x, y : T → ⋃

t∈T Mt as follows

x(t) =







ut,

pt,

rt,

wt,

y(t) =







vt, for t ∈ F ∩ S,

qt, for t ∈ T − (I ∪ F ),

st, for t ∈ J − F,

wt, for t ∈ [I − (J ∪ F )] ∪ (F − S).
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Put a = 2d(x, y). Now we show that a satisfies the conditions (i)–(iv).

(i): Let t ∈ T−(I∪F ). Then a(t) = 2·dt(x(t), y(t)) = 2·dt(pt, qt) ≥ α(t).
(ii): Let t ∈ I − (J ∪ F ). Then a(t) = 2 · dt(wt, wt) = 0 = diamMt.

Let t ∈ J−F . Then a(t) = 2·dt(rt, st) > 2· 12 ·diamMt = diamM−t.
This shows that a(t) ≥ diamMt for all t ∈ I − F .

(iii): Let t ∈ F ∩ S. Then a(t) = 2 · dt(ut, vt) ≥ δ.
(iv): Let t ∈ F ∩ S. Then dt(x(t), y(t)) = dt(ut, vt) < γ.

Let t ∈ F − S. Then dt(x(t), y(t)) = dt(wt, wt) = 0 < γ.
Therefore dt(x(t), y(t)) < γ for each t ∈ F , i.e.

(x, y) ∈
⋂

t∈F

(πt × πt)
−1(d−1t ([0, γ))).

Then by Corollary 9.1 we obtain

f(a) ≤ 2 · f(d(x, y)) < 2 · ε

2
= ε.

Sufficiency. By Lemma 1 it suffices to prove that Uf ⊂ Uu. Let U ∈ Uf .
Then there is ε > 0 such that

(f(d))−1([0, 2ε)) ⊂ U.

Then by the hypotheses we have

∃F ⊂ T, F 6= ∅ finite ∃δ > 0 ∀α ∈ N
T ∃a ∈ [0,+∞)T : (i)–(iv).

Let γ > 0 be such that

d−1t ((0, γ)) = ∅ for each t ∈ F − S.

Put
A =

⋂

t∈F

(πt × πt)
−1(d−1t ([0,min(γ, δ)))).

Evidently A ∈ Uu. Let (x, y) ∈ A. Then

dt(x(t), y(t)) < min(γ, δ) for each t ∈ F.

Let t ∈ T − (I ∪ F ). Then there is a positive integer nt such that

dt(x(t), y(t)) ≤ nt.
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Define a mapping α : T → N by

α(t) =

{
nt, for t ∈ T − (I ∪ F ),

1, otherwise.

Then there is a ∈ [0,+∞)T satisfying (i)–(iv). We show that d(x, y) ≤ a:

dt(x(t), y(t)) ≤







diamMt for each t ∈ I − F,

δ for each t ∈ F ∩ S,

α(t) for each t ∈ T − (I ∪ F ),

0 for each t ∈ F − S,

which yields dt(x(t), y(t)) ≤ a(t) for each t ∈ T . Therefore by Corollary 9.1
we obtain

f(d(x, y)) ≤ 2f(a) < 2ε,
i.e. (x, y) ∈ (f(d))−1([0, 2ε)).
This show that A ⊂ (f(d))−1([0, 2ε)) ⊂ U, therefore U ∈ Uu.
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12. Topologies on a product of metric spaces

The results in this section are extracted from [18].

Proposition 1. Let Q 6= ∅ be finite. Let f : [0,+∞)Q → [0,+∞) be metric
preserving. Then f is continuous if and only if f(ι{q},Q) is continuous for
each q ∈ Q.

Proof. One part of the proof follows from the fact that ιS,T is continuous
for each S ⊂ T (see [8], p. 59). For the second part, let ε > 0, q ∈ Q. Since
f(ι{q},Q) is continuous,

∃xq > 0 : (fι{q},Q(xq)) < ε/(cardQ).

Put
a =

∑

q∈Q

ι{q},Q(xq).

Thus a ∈ [0,+∞)Q, ΘQ <Q a, and

f(a) ≤
∑

q∈Q

f(ι{q},Q(xq)) < ε.

Then by Proposition 9.2 the function f is continuous.

For each metric preserving function f : [0,+∞)T → [0,+∞) put
F (f) = {t ∈ T : f(ι{t},T ) is continuous}.

Corollary 1. Let T be a nonempty set. Let f : [0,+∞)T → [0,+∞) be
metric preserving. Then f(ιS,T ) is continuous iff S ⊂ F (f).

The following example shows that the condition “finite” in Proposition 1
cannot be omitted.

Example 1. Let P 6= ∅. Define a mapping f : [0,+∞)P → [0,+∞) as
follows

f(x) = sup{min(1, xt) : t ∈ P }.
Then f is metric preserving, F (f) = P , and f is continuous iff P is finite.

Define a function jT : [0,+∞)T → [0,+∞) by

jT (x) =

{
0 for x = ΘT ,

1 for x 6= ΘT .
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Proposition 2. Let the set T be finite. Let h : [0,+∞)T → [0,+∞) be a
continuous metric preserving functions. Let S be a nonempty finite subset
of T . Define a mapping hS : [0,+∞)T → [0,+∞) as follows

hS(x) =

{
h(x)/(1 + h(x)) for x ∈ Im(iS,T ),

1 otherwise.

Then hS is metric preserving and F (hS) = S.

Proof. Let x ∈ [0,+∞)T . Then hS(x) = 0⇔ h(x) = 0⇔ x = ΘT .
Let x, y, z ∈ [0,+∞)T , x ≤T y+z, y ≤T x+z, z ≤T x+y. Since h is metric
prreserving, we have

h(x) ≤ h(y) + h(z).

If hS(y)+hS(z) < 1, then x, y, z ∈ Im(ιS,T ), thus hS(x) = h(x)/(1+h(x)) ≤
h(y)/(1 + h(y)) + h(z)/(1 + h(z)) = hS(y) + hS(z). If hS(y) + hS(z) ≥ 1,
then hS(x) ≤ 1 ≤ hS(y) + hS(z). This shows that hS is metric preserving.

Since h is continuous, hS(ιS,T ) =
h(ιS,T )

1 + h(ιS,T )
is continuous. Thus

S ⊂ F (hS).

Since for each t ∈ T − S the function hS(ι{t},T ) = jT (ι{t},T ) is not contin-
uous, we have T − S ⊂ T − F (hS).

Consider an indexed family {(Mt, dt)}t∈T of metric spaces (where T 6= ∅
is a set of indices). Put

L = {Tf ; f : [0,+∞)T → [0,+∞) is a metric preserving function}.

Proposition 3. Let f, g : [0,+∞)T → [0,+∞) be metric preserving. Sup-
pose that Tf ⊂ Tg. Then

F (f) ⊃ F (g) ∩ H.

Proof. Let t ∈ F (g) ∩ H . Let ε > 0. Select a ∈ ∏t∈T Mt such that a(t) is
an accumulation point of Mt. Since Tf ⊂ Tg, there exists δ > 0 such that

Bg(d)(a, 2δ) ⊂ Sf(d)(a, ε).
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Since g(ι{t},T ) is continuous, we have

∃y > 0 : g(ι{t},T (y)) < δ.

Let q ∈ Mt such that 0 < dt(a(t), q) < y. Define a mapping b : T → ⋃

t∈T

Mt

as follows

b(s) =

{
q for s = t,

a(s) otherwise.

Put x = dt(a(t), b(t)). Since (gι{t},T ) is metric preserving and x ≤ y, we
have g(d(a, b)) = g(ι{t},T (x)) ≤ 2 · g(ι{t},T )(y)) < 2δ. Thus b ∈ Sg(d)(a, 2δ).
Then we have f(ι{t},T )(x)) = f(d(a, b)) < ε. This shows that the function
f(ι{t},T ) is continuous.

In the following it will be proved that if T is finite, then the topologies
generated by metric preserving functions are determined by subsets of the
set of all indices t such that the metric spaces (Mt, dt) are not discrete.

Theorem 1. Let the set T be finite. Let f, g : [0,+∞)T → [0,+∞) be
metric preserving. Then Tf ⊂ Tg iff F (f) ⊃ F (g) ∩ H.

Proof. One part of the proof follows from Proposition 3.
For the second part, let a ∈ ∏t∈T Mt, ε > 0. We show that

∃δ > 0 : Bg(d)(a, δ) ⊂ Bf(d)(a, ε).

Let γ > 0 such that

∀t ∈ T − H ∀b ∈ [0,+∞)T : (dt(a(t), b(t)) < γ)⇒ a(t) = b(t).

Let η > 0 such that

∀t ∈ T − F (g) ∀x > 0 : g(ι{t},T (x)) ≥ η.

Let t ∈ F (f). Since f(ι{t},T ) is continuous, there exists xt > 0 such that

f(ι{t},T (xt)) < ε/(2 cardT ).

Put
δt = g(ι{t},T (xt))/2.



64 Chapter 12

For each t ∈ T − F (f) put xt = 0. For each t ∈ T put

γt = g(ι{t},T (γ))/2.

Put

δ = min({δt : t ∈ F (f)} ∪ {γt : t ∈ T } ∪ {η/2}).

Let b ∈ Bg(d)(a, δ), t ∈ F (f). Since 2g(d(a, b) < 2δ ≤ g(ι{t},T (xt)), we have

2dt(a(t), b(t)) < xt.

Let t ∈ T − H . Since 2g(d(a, b)) ≤ 2δ ≤ g(ι{t},T (yt)), we have

2dt(a(t), b(t)) < γ.

Therefore a(t) = b(t).

Let t ∈ T − F (g). Put

u = dt(a(t), b(t)).

Since ι{t},T (u) ≤T 2 · d(a, b)), we have

g(ι{t},T (u)) ≤ 2 · g(d(a, b)) < 2δ ≤ η.

Thus a(t) = b(t). Therefore we obtain

f(d(a, b)) ≤ 2 · f
(
∑

t∈T

ι{t},T (xt)

)

≤ 2 ·
∑

t∈T

f(ι{t},T (xt)) < ε.

This shows that b ∈ Bf(d)(a, ε).

Corollary 1. Let the set T be finite. Let f, g : [0,+∞)T → [0,+∞) be
metric preserving. Then Tf = Tg iff H ∩ F (f) = H ∩ F (g).

The following example shows that the condition “finite” in Proposition 3
cannot be omitted.
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Example 2. Let P be an infinite set. Let a : P → N be a surjection.
Define a mapping g : [0,+∞)P → [0,+∞) as follows

g(x) = sup{min(1, a(t) · x(t)) : t ∈ P }.

It is not difficult to verify that g is metric preserving. Consider the metric
preserving function f from Example 1. Consider the indexed family of
metric spaces {(Mt, dt)}t∈P given by Mt = R, dt(x, y) = |x − y| for each
t ∈ P . Evidently Bg(d)(ΘP , 1) ∈ Tg. We prove that Bg(d)(ΘP , 1) /∈ Tf . Since

for every constant function u ∈ [0,+∞)P , u 6= ΘP we have g(u) = 1, for
every ε > 0 we obtain

Bf(d)(ΘP , ε) 6⊂ Bg(d)(ΘP , 1).

Thus Bg(d)(ΘP , 1) is not the neighbourhood of the point ΘP in Tf . This
shows that Bg(d)(ΘP , 1) /∈ Tf . Then Tg 6⊂ Tf , but F (f) = F (g) = P .

Proposition 4. Let the set T be finite. Let h : [0,+∞)T → [0,+∞) be a
continuous metric preserving function. Put h∅ = jT . Then

L = {ThS
: S ⊂ H}.

Proof. Let f : [0,+∞)T → [0,+∞) be a metric preserving function. Put
S = H ∩ F (f). Then we have H ∩ F (hS) = H ∩ S = H ∩ F (f). Therefore
Tf = ThS

.

It is not difficult to prove that the partially ordered set (L,⊂) is a lattice.
Theorem 2. The lattices (L,⊂) and (expH,⊂) are dually isomorphic.
Proof. Define a mapping Ω : L → expH by

Ω(Tf ) = H ∩ F (f).

Then the mapping Ω is a dual isomorphism.

A characterization of the lattice of topologies Tf on an infinite products
of metric spaces is an open question.
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13. Isotone metric preserving functions

Lassak [35] investigated metric preserving functions of the form x 7→ ||x||,
where || · || is a norm in the space R

n.

Proposition 1. (See [35], [29].) Let || · || be a norm in R
n. Then the

function x 7→ ||x|| is metric preserving iff it is isotone.
There is a norm in R

2 which is not isotone
(for example ||(x, y)|| =

√

x2 + y2 − xy ).

A different approach can be found in Aumann’s monograph [1]. For each
function f : [0,+∞)n → [0,+∞) define the functions
fi : [0,+∞)→ [0,+∞) (i = 1, 2, . . . , n) as follows

f1(x) = f(x, 0, 0, . . . , 0),

f2(x) = f(0, x, 0, . . . , 0),

...

fn(x) = f(0, . . . , 0, 0, x),

f∆(x) = f(x, x, . . . , x, x).

We say that a function f : [0,+∞)n → [0,+∞) is an Aumann function iff
(1) f is isotone,
(2) f is subadditive,
(3) f1(x) = f2(x) = · · · = fn(x) = x for each x ∈ [0,+∞).

The following three functions are examples of such functions:

f1(x) =

√
√
√
√

n∑

i=1

x2i , f2(x) =

n∑

i=1

xi, f3(x) = max
1≤i≤n

{xi}.

The property (3) determines Aumann functions on the border of their
domain. The greatest variability of these functions we can expect on the
diagonal.

Proposition 2. Let f be an Aumann function. Then the function f∆ has
the following properties

(i) f∆ is nondecreasing,
(ii) f∆ is subadditive, and
(iii) x ≤ f∆(x) ≤ nx for each x ∈ [0,+∞).
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A natural question is how much the properties (i)–(iii) determine Au-
mann functions on the diagonal. The answer is provided by the following
theorem.

Theorem 1. (See [50].) Let ϕ : [0,+∞)→ [0,+∞) be a function satisfying
properties (i)–(iii). Then there is an Aumann function f such that ϕ = f∆.

Proof. It is sufficient to define this function f by

(*) f(x) = max

{

max
1≤i≤n

{ai}, f
(

1

n

n∑

i=1

ai

)}

.

It is not difficult to verify that the function f has the required properties.

The following example shows that there is an Aumann function which is
not a norm in R

n.

Example 1. Let f has the form (*), where

ϕ(x) =







2x, if 0 ≤ x ≤ 0.5,
1, if 0.5 ≤ x ≤ 1,
x, otherwise.

This function is not homogeneous (e.g. 3
4 f(1,1,...,1)= 34 6=1=f( 34 , 34 ,..., 34 ) ). (See

Fig. 18 for the case n = 2.)
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Figure 18

Note that functions of the form (*) are symmetric. The following example
shows that there are Aumann functions which are not symmetric.

Example 2. Define f : [0,+∞)n → [0,+∞) as follows

f(x) = max

{

max
1≤i≤n

{ai}, a1 +min
(

1,

n∑

i=2

ai

)}

.

It is not difficult to verify that this function is an Aumann function and
f(1, 1.5, 0, . . . , 0) = 2 6= 2.5 = f(1.5, 1, 0, . . . , 0). (See Fig. 19. for the case
n = 2.)
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Figure 19

Denote by An the set of all Aumann functions f : [0,+∞)n → [0,+∞).
Then

1) An is convex, i.e. for each pi ∈ [0,+∞) (1 ≤ i ≤ n) with
n∑

i=1

pi = 1

and for each fi ∈ An (i = 1, 2, . . . , n) we have
n∑

i=1

pifi ∈ An.

2) Let f ∈ An. Let (j1, j2, . . . , jn) be an arbitrary permutation of
(1, 2, . . . , n). Define g : [0,+∞)n → [0,+∞) by

g(x1, x2, . . . , xn) = f(xj1 , xj2 , . . . , xjn
).

Then g ∈ An.
If f ∈ An is not symmetric, then the function
g : [0,+∞)n → [0,+∞) defined by

g(x1, x2, . . . , xn) =
1

n!
·

∑

(j1,j2,...,jn)

f(xj1 , xj2 , . . . , xjn
)

is a symmetric function from An.
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3) Let f ∈ An, r > 0. Define g : [0,+∞)n → [0,+∞) by

g(x) =
1

r
· f(rx).

Then g ∈ An.
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14. Sums of metrics

L. Zsilinszky [68] studied properties of the sum of metrics on a given set
and asked the following question:

Is it true that the sum of two metrics generating separable metric spaces
generates a separable metric space again ?

The results in this section are extracted from [51].

Let X be a given nonempty set. Let di be an arbitrary metric on the set
X for each i = 1, 2, . . . , n. Put

D = {(x1, x2, . . . , xn) ∈ Xn : x1 = x2 = · · · = xn}.

For each metric preserving function f : [0,+∞)n → [0,+∞) define a
metric %f on the set X as follows

%f (x, y) = f(d1(x, y), d2(x, y), . . . , dn(x, y)).

It is easy to see that the metric space (X, %f ) is isometric to the metric
space (D, f(d)).

Lemma 1. If f is a discontinuous metric preserving function, then the
metric space (D, f(d)) is uniformly discrete.

Proof. By Corollary 9.2 there is η > 0 such that f(x1, x2, . . . , xn) ≥ η for
each xi > 0 (i = 1, 2, . . . , n). Let a, b ∈ X , a 6= b. Put xi = di(a, b) for each
i = 1, 2, . . . , n. Then

f(d(( a, a, . . . , a
︸ ︷︷ ︸

n

), ( b, b, . . . , b
︸ ︷︷ ︸

n

))) = f(d1(a, b), d2(a, b), . . . , dn(a, b)) =

= f(x1, x2, . . . , xn) ≥ η.

Now we give a positive answer to the problem of Zsilinszky. (See [51].)
Suppose that (X, di) is separable for each i = 1, 2, . . . , n. If f is a continuous
metric preserving function, then (Xn, f(d)) is a separable metric space, and
(D, f(d)) is its separable subspace.In the case of discontinuity of f the space
(D, f(d)) is separable iff the set D is countable.
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Theorem 1. Let (X, di) be a compact metric space for each i = 1, 2, . . . , n.
Let f : [0,+∞)n → [0,+∞) be metric preserving. If f is continuous then
the following conditions are equivalent:

a) (X, %f ) is a compact space,
b) (D, f(d)) is a closed subspace of (Xn, f(d)).

If f is discontinuous then (X, %f ) is compact iff it is finite.

Proof. By Corollary 10.1 the metric f(%) generates the product topology
on Xn. Hence (Xn, f(d)) is a compact space. Therefore the space (D, f(d))
is closed iff it is compact.

In the same way we can prove the following theorem.

Theorem 2. Let (X, di) be a complete metric space for each i = 1, 2, . . . , n.
Let f : [0,+∞)n → [0,+∞) be metric preserving. If f is continuous then
the following conditions are equivalent:

c) (X, %f ) is a complete space,
d) (D, f(d)) is a closed subspace of (Xn, f(d)).

If f is discontinuous then (X, %f ) is a complete space.

Finally we describe the relationships between the metrics
∑n

i=1 di and
%f .

Theorem 3. Let f : [0,+∞)n → [0,+∞) be metric preserving. Let (X, di)
be a metric space for each i = 1, 2, . . . , n. If the metric

∑n
i=1 fi is not

discrete then the metrics %f and
∑n

i=1 fi are equivalent iff f is continuous.

Proof. One part of the proof follows from Corollary 10.1. For the sec-
ond part, let (zk)k∈N be a sequence converging to z in the metric space
(Xn,

∑n
i=1 di) such that zk 6= z for each k ∈ N. Since %f and

∑n
i=1 di are

equivalent, zk converges to z also in the metric space (X, %f ), i.e.

∀ε > 0 ∃k0 ∈ N ∀k ≥ k0 : d(z, zk) < ε.

Put xi = di(z, zk0) for each i = 1, 2, . . . , n. This shows that

∀ε > 0 ∃x1, x2, . . . , xn > 0 : f(x1, x2, . . . , xn) < ε.

Therefore f is continuous.

In the same way we can prove the following theorem.

Theorem 4. Let f : [0,+∞)n → [0,+∞) be metric preserving. Let (X, di)
be a metric space for each i = 1, 2, . . . , n. If the metric

∑n
i=1 di is not

uniformly discrete then the metrics %f and
∑n

i=1 di are uniformly equivalent
iff f is continuous.
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15. Modifications of the Euclidean metric on reals

Denote by M the set of all functions f ∈ O such that for each metric
space (M, d) the function df is a metric on M . Denote by M0 (M1) the
set of all functions f ∈ O such that ef is a pseudometric (metric) on the
real line, where e : R × R → [0,+∞) is the Euclidean metric on R

(i.e. e(x, y) = |x − y| for each x, y ∈ R).

Proposition 1. Let f ∈ O. Then
a) f ∈ M0 iff f maps each triangle triplet (a, b, a + b) to a triangle
triplet;

b) f ∈ M1 iff f ∈ M0 and f vanishes exactly at the origin.

Denote by F the even extension of f ∈ O, i.e. F : R → [0,+∞),
F (x) = f(|x|) for each x ∈ R. It is not difficult to prove

Proposition 2. Let f ∈ O. Then the following assertions are equivalent
(i) f ∈ M0,
(ii) F is subadditive,
(iii) ∀x, y ∈ [0,+∞) : |f(x)− f(y)| ≤ f(|x − y|).

Corollary 1. Let f ∈ M0. Then f is continuous iff it is continuous at the
origin.

Proposition 3. Let f ∈ M0. Then F is periodic with the period t > 0 iff
f(t) = 0.

Proof. Suppose that f(t) = 0. Let x ∈ R. Then

F (x+ t) ≤ F (x) + F (t) = F (x) ≤ F (x+ t) + F (−t) = F (x + t),

which yields F (x+ t) = F (x).

Corollary 2. Let f ∈ M0. Suppose that f is differentiable on the right
at some s ∈ f−1(0). Then for each t ∈ f−1(0) there exist both one-sided
derivatives of F and F ′

+(t) = −F ′
−(t) = f ′

+(s).

Proposition 4. Let f ∈ M0, t ∈ F−1(0). Then F is differentiable at t iff
F is constant.

Proof. By Corollary 2 the function F is differentiable at the origin and
F ′(0) = 0. Let a > 0. We shall show that f(a) = 0. Let ε > 0. Then there
is δ > 0 such that for each x ∈ (0, δ) we have

f(x)

x
<

ε

a
.
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Choose n ∈ N such that a
n

< δ. Then

f
(a

n

)

<
ε

n
.

Therefore f(a) ≤ n · f
( a

n

)

< ε. Since ε > 0 was arbitrary, we obtain
f(a) = 0.

Corollary 3. If f ∈ M0 be nonconstant. Suppose f is differentiable on
(0,+∞). Then f ∈ M1.

The following example shows that the assumption ”f ∈ M ” in Corol-
lary 2.1 cannot be replacet by the assumption ”f ∈ M1”.

Example 1. Define f : [0,+∞)→ [0,+∞) by

f(x) = | sinx|+ | sin
√
2x|.

Then f ∈ M1, but lim inf
x→+∞

f(x) = 0.

Now we will describe a construction of differentiable functions f ∈ M1

with lim inf
x→+∞

f(x) = 0.

Lemma 1. Let f ∈ M, n ∈ N. Define fn : [0,+∞)→ [0,+∞) as follows

fn(x) =







f(x) x ∈ [0, 2n−1],
f(2n − x) x ∈ (2n−1, 2n],
fn(x − k.2n) x ∈ (k.2n, (k + 1).2n], (k = 1, 2, . . . ).

Then fn ∈ M0.

Proof. Let x, y > 0. Then there are k, l ∈ {0, 1, 2, 3, . . .} such that

k.2n < x ≤ (k + 1).2n and l.2n < y ≤ (l + 1).2n.

Put a = x − k.2n and b = y − l.2n. Evidently a, b ∈ (0, 2n]. Suppose that
a ≤ b. Now we show that (fn(x), fn(y), fn(x + y)) is a triangle triplet. We
distinguish six cases.

1) Let a, b, a+ b ∈ (0, 2n−1]. Since (a, b, a+ b) is a triangle triplet,

(fn(x), fn(y), fn(x + y)) = (f(a), f(b), f(a+ b)) is a triangle triplet.
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2) Let a, b ∈ (0, 2n−1], and a+ b ∈ (2n−1, 2n]. Since (a, b, 2n − a− b) is
a triangle triplet,

(f(a), f(b), f(2n − a − b)) is a triangle triplet.

3) Let a ∈ (0, 2n−1], and b, a+b ∈ (2n−1, 2n]. Since (a, 2n−b, 2n−a−b)
is a triangle triplet,

(f(a), f(2n − b), f(2n − a − b)) is a triangle triplet.

4) Let a ∈ (0, 2n−1], b ∈ (2n−1, 2n], and a+ b ∈ (2n, 3.2n−1]. Since
(a, 2n − b, a+ b − 2n) is a triangle triplet,

(f(a), f(2n − b), f(a+ b − 2n)) is a triangle triplet.

5) Let a, b ∈ (2n−1, 2n], and a+ b ∈ (2n, 3.2n−1]. Since
(2n − a, 2n − b, a+ b − 2n) is a triangle triplet,

(f(2n − a), f(2n − b), f(a+ b − 2n)) is a triangle triplet.

6) Let a, b ∈ (2n−1, 2n], and a+ b ∈ (3.2n−1, 2n+1]. Since
(2n − a, 2n − b, 2n+1 − a − b) is a triangle triplet,

(f(2n − a), f(2n − b), f(2n+1 − a − b)) is a triangle triplet.

As a corollary we obtain

Theorem 1. Let f ∈ M. Suppose that f(x) = 1 for each x ≥ 1. Define
f0 : [0,+∞) −→ [0,+∞) as follows

f0(x) = sup{21−nfn(x) : n ∈ N} for each x ≥ 0.

Then f0 ∈ M1 and f0(2
n) = 2−n for each n ∈ N.

The following example shows that there is a differentiable function
f ∈ M1 with lim inf

x→+∞
f(x) = 0.



76 Chapter 15

Example2. Let f ∈ O be such that (for each n ∈ N)

f is nondecreasing,(1)

f is differentiable on [0,+∞),(2)

f(an) = 2
1−n,(3)

f ′(an) = 0,(4)

f(x) = 1 for each x ≥ 1,(5)

f(x) ≥ kn.x for each x ∈ (an+1, an),(6)

f ′(x) ≤ kn+1 for each x ∈ (an+1, an),(7)

where an =
n+ 1

n.2n
and kn =

21−n

an

.

Since f = supn gn, where gn : [0,+∞)→ [0,+∞),

gn(x) =







kn+1.x x ∈ [0, an+1),

f(x) x ∈ [an+1, an],

21−n x ∈ (an,+∞),

we have f ∈ M. By Theorem f0 ∈ M1 and lim inf
x→+∞

f0(x) = 0. It is not

difficult to verify that f0 is differentiable on [0,+∞).
By this method it is not difficult to construct a singular function f ∈ M1

with lim inf
x→+∞

f(x) = 0.

Example 3. Let ϕ : [0, 1]→ [0, 1] be the standard Cantor function.
Define φ : [0,+∞)→ [0,+∞) as follows

φ(x) =

{
ϕ(x) x ∈ [0, 1],
1 otherwise.

It is not difficult to verify that φ ∈ M. By Theorem 1 we obtain φ0 ∈ M1

and lim inf
x→+∞

φ0(x) = 0. It is easy to see that φ0 is singular.

Note that if f ∈ M is continuous, f0 is almost periodic. In this connec-
tion a question arises of whether every continuous function f ∈ M1 with
lim inf
x→+∞

f(x) = 0 is almost periodic.
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In the final part we show that the metric space (R, ef ) is not complete
(see also [30]), where f : [0,+∞)→ [0,+∞) is definded as follows

f(x) =

{
x, if x ∈ [0, 1],
max(2−n, |x − m|), if x ∈ [m − 1, m+ 1],

where m = 2n(2k − 1) (for each k, n ∈ N). It is not difficult to verify that
f ∈ M1 and f(2n) = 2−n.
For each n ∈ N put

un =
10 · 4n − 1
3

.

Evidently each un is an odd natural number. Therefore f(un) = 1 for
each n ∈ N. It is easy to see that the sequence (un)n∈N is increasing and

un
e→ +∞.
Now we show that (un)n∈N is a Cauchy sequence in the metric space

(R, ef ). Suppose k, n ∈ N. Then

un+k − un =
10 · 4n+k − 1

3
− 10 · 4

n − 1
3

= 4n · 10 · 4
k − 1
3

.

Since
4k − 1
3

is an odd natural number, we obtain

f(|un+k − un|) =
1

2 · 4n .

Now we show that (un)n∈N is not convergent in the metric space (R, ef ).

By contradiction. Suppose that un

ef→ u. First we show that u is an odd
integer number. Since

|f(un)− f(|u|)| ≤ f(|un − u|)
︸ ︷︷ ︸

e→0

,

we have 1 = f(un)
e→ f(|u|). Thus |u| is an odd natural number.

Finally, we show that for each n ∈ N, 2n ≥ |3u+ 1|,

f(|un − u|) ≥ 1

|3u+ 1| .
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Let r > 0 and s be integer numbers such that 3u + 1 = 2r(2s − 1). Since
|3u+ 1| = 2r · |2s − 1| ≥ 2r, we obtain 2n ≥ 2r.

Since u =
2r(2s − 1)− 1

3
, we have

un − u = 2r · 2
2n+1−r · 5− 2s+ 1

3
︸ ︷︷ ︸

odd integer

, thus

f(|un − u|) = 2−r ≥ 1

|3u+ 1| , a contradiction.
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[40] Matkowski, J. and Świa̧tkowski, T., Quasi-monotonicity, subadditive bijections of
R+, and characterization of Lp-norm, J. Math. Anal. and Appl. 154 (1991), 493–
506.
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Comen. X, 3, Math. XII. (1965), 23–30.



81
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[51] Pokorný, I., Remarks on the sum of metrics, Tatra Mt. Math. Publ. 14 (1998),
63–65.

[52] Richey, M., Mapping the Cantor set onto [0,1] : a new construction, preprint.
[53] Rosenbaum, R. A., Subadditive functions, Duke Math. J. 17 (1950), 227–247.
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