О ФУНКЦИЯХ, КОМПОЗИЦИЯ С МЕТРИКОЙ КОТОРЫХ ЯВЛЯЕТСЯ МЕТРИКОЙ

ЯН БОРСИК-ЙОЗЕФ ЛОБОШ

При исследовании свойств данного метрического пространства (M, ρ) часто является пригодными заменить метрику ρ иной, являющейся с нею равномерно, или топологически эквивалентной. Поскольку метрика является функцией, новую метрику возможно приобрести ее композицией с какой-то функцией $f: R_0^+ \to R_0^+$. В литературе известны некоторые достаточные условия: если функция f достигает нуль в нуле и только в нуле, является неубывающей и вогнутой [2, стр. 70]; если функция f приобретает нуль в нуле и только в нуле, является неубывающей и субаддитивной [3, стр. 178], [4, стр. 149]. Для функций, соответствующих этим условиям, известны тоже некоторые результаты о эквивалентности данных метрик: если функция fявляется непрерывной в точке 0, то метрики $\varrho, f \circ \varrho$ являются равномерно эквивалентными [4, стр. 228], если функция ƒ является непрерывной, то метрики $\varrho, f \circ \varrho$ являются топологически эквивалентными [3, стр. 178]. В первой части работы исследуются некоторые достаточные условия. Необходимое и достаточное условие находится во второй части, в которой исследуется множество M всех функций, композиция с каждой метрикой которых является метрикой. Третья часть работы исследует отношения метрик ρ , $f \circ \rho$ для $f \in \mathcal{M}$.

1. Достаточные условия

- **1.1. Утверждение.** Пусть (M,ϱ) является метрическим пространством и пусть функция $f: R_0^* \to R_0^*$ обладает следующими свойствами (где $R_0^* = \{x \in R: x \ge 0\}$):
 - (1) $\forall a \in R_0^+$: $f(a) = 0 \Leftrightarrow a = 0$,
 - (2) $\forall a, b \in R_0^+$: $f(a+b) \leq f(a) + f(b)$,
 - (3) $\forall a, b \in R_0^+$: $a \leq b \Rightarrow f(a) \leq f(b)$.

Тогда функция $f \circ \varrho$ является метрикой на M .

Доказательство. [4, стр. 149].

1.2. Утверждение. Пусть (M, ϱ) является метрическим пространством и нусть функция $f: R_0^* \to R_0^*$ обладает следующими свойствами:

FUNCTIONS WHOSE COMPOSITION WITH EVERY METRIC IS A METRIC

Ján Borsík—Jozef Doboš

When examining the properties of a given metric space (M, ρ) , it is often adequate to exchange the metric ϱ for a different one which is uniformly or topologically equivalent with it. Because the metric is a function, new metric can be obtained by its composition with some function $f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$. In literature, several sufficient conditions are known: If the function f obtains zero if and only if in zero, it is nondecreasing and concave [2, p. 70]; If function f obtains zero if and only if in zero, it is nondecreasing and subadditive [3, p. 178], [4, p. 149]. For functions which meet these conditions, there are some known results about equivalence of given metrics: if function f is continuous at point zero, then the metrics ϱ , $f \circ \varrho$ are uniformly equivalent [4, p. 228], if function f is continuous, then metrics ϱ , $f \circ \varrho$ are topologically equivalent [3, p. 178]. In the first section of the work we examine the sufficient conditions. Necessary and sufficient condition can be found in the second section where the set \mathcal{M} of all functions of which the composition with every metric is metric is explored. The third section investigates the connections of metrics ρ , $f \circ \rho$ for $f \in \mathcal{M}$.

1. Sufficient Conditions

- **1.1.** Proposition. Let (M, ϱ) be a metric space. Let a function $f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$ have the following properties (where $\mathbb{R}_0^+ = \{x \in \mathbb{R} : x \geq 0\}$):
 - (1) $\forall a \in \mathbb{R}_0^+ : f(a) = 0 \Leftrightarrow a = 0,$
 - $(2) \ \forall a, b \in \mathbb{R}_0^+: f(a+b) \leq f(a) + f(b),$ $(3) \ \forall a, b \in \mathbb{R}_0^+: a \leq b \Rightarrow f(a) \leq f(b).$

Then $f \circ \rho$ is a metric on M.

Proof. [4; p. 149].

1.2. Proposition. Let (M, ϱ) be a metric space. Let a function $f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$ have the following properties:

- (1) $\forall a \in R_0^+$: $f(a) = 0 \Leftrightarrow a = 0$,
- (2) $\forall p, q \in R_0^+, p + q = 1 \ \forall a, b \in R_0^+: f(pa + qb) \geqq p \cdot f(a) + q \cdot f(b).$ Тогда функция $f \circ \varrho$ является метрикой на M.

Доказательство. Пусть $x, y \in R_0^+, x < y$. Подставляя в (2) q = x/y, a = 0, b = y, получаем $y \cdot f(x) - x \cdot f(y) \ge 0$. Положив в (2) p = x/y, a = x, b = x + y и используя предыдущее неравенство, получаем $f(x+y) \le f(x) + f(y) - (y \cdot f(x) - x \cdot f(y))/(y - x) \le f(x) + f(y)$.

Подставляя в (2) p=1/2, a=0, b=2x, получаем $f(x+x) \leq f(x)+f(x)$. Следовательно, $\forall x,y \in R_0^+$: $f(x+y) \leq f(x)+f(y)$. Пусть $\exists x,y \in R_0^+$, x < y: f(x) > f(y). Положим $z=(y\cdot f(x)-x\cdot f(y))/(f(x)-f(y))\in R^+$ (где $R^+=\{x\in R\colon x>0\}$). Подставляя в (2) p=f(y)/f(x), a=x, b=z, получаем (1 f(y)/f(x)) $f(z) \leq 0$, $f(z) \leq 0$, $f(z) \leq 0$, а это в противоречии с (1). Значит,

$$\forall x, y \in R_0^+: x \leq y \Rightarrow f(x) \leq f(y).$$

Согласно 1.1. $f \circ \rho$ является метрикой.

- **1.3. Утверждение.** Пусть (M, ϱ) является метрическим пространством и пусть функция $f: R_0^+ \to R_0^+$ обладает следующими свойствами:
 - (1) f(0) = 0,
 - (2) $\exists a \in R^+ \forall x \in R^+ : f(x) \in \langle a, 2a \rangle$.

Тогда функция $f \circ \varrho$ является метрикой.

Доказательство. Очевидно, что $f \circ \varrho$ обладает 1. и 2. свойством метрики. Пусть $x, y, z \in M$. Если $x \neq y \neq z \neq x$, то $(f \circ \varrho)(x, y) \leq 2a = a + a \leq (f \circ \varrho)(y, x) + (f \circ \varrho)(y, z)$. В остальных случаях неравенство треугольника очевидно выполняется. Следовательно, $f \circ \varrho$ является метрикой.

2. Необходимое и достаточное условие

- 2.1. Обозначим знаком \mathcal{M} множество всех функций $f: R_0^+ \to R_0^+$ обладающих следующим свойством: для каждого метрического пространства (M, ϱ) $(M, f \circ \rho)$ тоже является метрическим пространством.
 - **2.2.** Утверждение. (\mathcal{M} , \circ) является моноидом.

Доказательство. Пусть $f, g \in \mathcal{M}$ и пусть (M, ϱ) — метрическое пространство. Тогда $(M, g \circ \varrho)$ является метрическим пространством. Следовательно, $(M, f \circ (g \circ \varrho)) = (M, (f \circ g) \circ \varrho)$ является метрическим пространством, а это означает, что $f \circ g \in \mathcal{M}$.

2.3. Лемма. Пусть $f \in \mathcal{M}$. Тогда

$$\forall a \in R_0^+: f(a) = 0 \Leftrightarrow a = 0.$$

Доказательство. Пусть M = R, $\varrho(x, y) = |x - y|$ для всех $x, y \in R$. Тогда

- $\begin{array}{ll} (1) \ \forall a \in \mathbb{R}^+_0: f(a) = 0 \Leftrightarrow a = 0, \\ (2) \ \forall p,q \in \mathbb{R}^+_0, p+q = 1 \ \forall a,b \in \mathbb{R}^+: f(pa+qb) \geqq p \cdot f(a) + q \cdot f(b). \end{array}$ Then $f \circ \varrho$ is a metric on M.

Proof. Let $x, y \in \mathbb{R}_0^+$, x < y. By the substitution q = x/y, a = 0, b = y in (2) we obtain $y \cdot f(x) - x \cdot f(y) \ge 0$. By the substitution p = x/y, a = x, b = x + y in (2) and by the preceding inequality we obtain $f(x+y) \le f(x) + f(y) - (y \cdot f(x) - x \cdot f(y))/(y-x) \le f(x) + f(y).$

By the substitution p = 1/2, a = 0, b = 2x in (2) we obtain $f(x+x) \leq f(x) + f(x)$. Thus $\forall x, y \in \mathbb{R}_0^+ : f(x+y) \leq f(x) + f(y)$. Now suppose that there are $x, y \in \mathbb{R}_0^+$ such that x < y and f(x) > f(y). Put $z = (y \cdot f(x) - x \cdot f(y)) / (f(x) - f(y)) \in \mathbb{R}^+ \text{ (where } \mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}).$ By the substitution p = f(y)/f(x), a = x, b = z in (2) we obtain $(1-f(y)/f(x)) \cdot f(z) \leq 0$, i.e. $f(z) \leq 0$, which contradicts (1). This vields

$$\forall x, y \in \mathbb{R}_0^+ : x \le y \Rightarrow f(x) \le f(y).$$

By 1.1 $f \circ \varrho$ is a metric.

- **Proposition.** Let (M, ϱ) be a metric space. Let a function $f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$ have the following properties:
- (1) f(0) = 0,
- (2) $\exists a \in \mathbb{R}^+ \ \forall x \in \mathbb{R}^+ : f(x) \in \langle a, 2a \rangle.$

Then $f \circ \varrho$ is a metric.

Proof. It is clear that $f \circ \rho$ has 1. and 2. property of metric. Let $x, y, z \in M$. If $x \neq y \neq z \neq x$, then $(f \circ \varrho)(x, y) \leq 2a = a + a \leq 2a$ $(f \circ \varrho)(y,x) + (f \circ \varrho)(y,z)$. In the other cases the triangle inequality is evident. Thus $f \circ \varrho$ is a metric.

2. Necessary and Sufficient Condition

- 2.1. Denote by $\mathcal M$ the set of all functions $f:\mathbb R_0^+\to\mathbb R_0^+$ with the following property: for each metric space (M, ϱ) $(M, f \circ \varrho)$ is a metric space.
- **2.2. Proposition.** (\mathcal{M}, \circ) is a monoid.

Proof. Let $f,g \in \mathcal{M}$. Let (M,ϱ) be an arbitrary metric space. Then $(M, g \circ \varrho)$ is a metric space. Thus $(M, f \circ (g \circ \varrho)) = (M, (f \circ g) \circ \varrho)$ is a metric space, which yields $f \circ g \in \mathcal{M}$.

2.3. Lemma. Let $f \in \mathcal{M}$. Then

$$\forall a \in \mathbb{R}_0^+ : f(a) = 0 \Leftrightarrow a = 0.$$

Proof. Put $M = \mathbb{R}$, $\rho(x,y) = |x-y|$ for each $x,y \in \mathbb{R}$. Then $(M,f \circ \rho)$

 $(M, f_{\circ}\varrho)$ является метрическим пространством и $\forall a \in R_0^+ : \varrho(a, 0) = a$. Пусть $a \in R_0^+$. Тогда $0 = f(a) = (f_{\circ}\varrho)(a, 0) \Leftrightarrow a = 0$.

2.4. Лемма. Пусть $f \in \mathcal{M}$. Тогда

$$\forall a, b, c \in R_0^+: |a-b| \le c \le a+b \Rightarrow f(a) \le f(b)+f(c)$$
.

Доказательство. Пусть $M=R\times R$, $\varrho((x_1,y_1),\ (x_2,y_2))=\sqrt{((x_1-x_2)^2+(y_1-y_2)^2)}$ для всех $x_1,x_2,y_1,y_2\in R$. Пусть $a,b,c\in R_0^+,|a-b|\leqq c\leqq a+b,$ тогда $a+b+c\geqq 0,\ a-b+c\geqq 0,\ a+b-c\geqq 0,\ -a+b+c\geqq 0.$ Положим $u=(a/2,0),\ v=(-a/2,0),\ w=((c^2-b^2)/(2a),\ (\sqrt{((a+b+c)\cdot(a+b-c)\cdot(a-b+c)\cdot(-a+b+c)))/(2a)}),$ если $a\ne 0$ и w=(b,0), если a=0. Из того, что $(M,f\circ\varrho)$ является метрическим пространством, следует $(f\circ\varrho)(u,v)\leqq (f\circ\varrho)(u,w)+(f\circ\varrho)(v,w)$. Значит, $f(a)\leqq f(b)+f(c)$.

2.5. Лемма. Пусть $f \in \mathcal{M}$. Тогда

- (1) $\forall a, b \in R_0^+: f(a+b) \leq f(a) + f(b),$
- (2) $\forall a, b \in R_0^+: a \leq 2b \Rightarrow f(a) \leq 2 \cdot f(b)$.

Доказательство. Пусть $a, b \in R_0^+$. Поскольку $|(a+b)-a| \le b \le (a+b)+a$, то $f(a+b) \le f(a)+f(b)$. Пусть $a, b \in R_0^+$, $a \le 2b$. Поскольку $|a-b| \le b \le a+b$, то $f(a) \le f(b)+f(b)=2\cdot f(b)$.

- **2.6.** Следствие. Пусть $f \in \mathcal{M}$ и пусть $a \in R_0^+$. Тогда $\forall n \in N$: $f(a)/2^n \leq f(a/2^n)$. Доказательство. Так как $a \leq 2 \cdot (a/2)$, то $f(a) \leq 2 \cdot f(a/2)$, т. е. $f(a)/2 \leq f(a/2)$. Пусть $k \in N$ и пусть $f(a)/2^k \leq (a/2^k)$. Поскольку $a/2^k \leq 2 \cdot (a/2^{k+1})$, то $f(a/2^k) \leq 2 \cdot f(a/2^{k+1})$. Отсюда следует, что $f(a)/2^{k+1} \leq f(a/2^k)/2 \leq f(a/2^{k+1})$.
- **2.7. Теорема.** Пусть $f: R_0^+ \to R_0^+$. Тогда для того, чтобы $f \in \mathcal{M}$, необходимо и достаточно, чтобы
 - (1) $\forall a \in R_0^+: f(a) = 0 \Leftrightarrow a = 0$,
 - $(2) \quad \forall a, b, c \in \mathbb{R}_0^+: |a-b| \le c \le a+b \Rightarrow f(a) \le f(b)+f(c).$

Доказательство. Необходимость вытекает из 2.3. и 2.4., покажем достаточность. Пусть (M,ϱ) является метрическим пространством и пусть $x,y,z\in M$. Тогда $(f\circ\varrho)(x,y)=0 \Leftrightarrow \varrho(x,y)=0 \Leftrightarrow x=y$. Положив $\varrho(x,z)=a,\varrho(y,y)=b,\varrho(y,z)=c$, получим $|a-b|\leq c\leq a+b$, и согласно (2) будем иметь $f(a)\leq f(b)+f(c)$, т. е. $(f\circ\varrho)(x,z)\leq (f\circ\varrho)(y,x)+(f\circ\varrho)(y,z)$. Отсюда следует, что $f\in \mathcal{M}$.

- **2.8.** Следствие. Пусть $f: R_0^* \to R_0^*$. Тогда для того, чтобы $f \in \mathcal{M}$, необходимо и достаточно, чтобы:
 - (i) $f(0) = 0 \& \exists a \in R^+: f(a) > 0$,
 - (ii) $\forall a, b, c \in \mathbb{R}_0^+$: $|a-b| \le c \le a+b \Rightarrow f(a) \le f(b) + f(c)$.

is a metric space and $\forall a \in \mathbb{R}_0^+$: $\varrho(a,0) = a$. Let $a \in \mathbb{R}_0^+$. Then $0 = f(a) = (f \circ \rho)(a, 0) \Leftrightarrow a = 0.$

2.4. Lemma. Let $f \in \mathcal{M}$. Then

$$\forall a, b, c \in \mathbb{R}_0^+ : |a - b| \le c \le a + b \Rightarrow f(a) \le f(b) + f(c).$$

Proof. Put $M = \mathbb{R} \times \mathbb{R}$, $\varrho((x_1, y_1), (x_2, y_2)) = \sqrt{((x_1 - x_2)^2 + (y_1 - y_2)^2)}$ for each $x_1, y_1, x_2, y_2 \in \mathbb{R}$. Let $a, b, c \in \mathbb{R}^+, |a-b| \leq c \leq a+b$. Then $a+b+c \geq a+b$ $0, a-b+c \ge 0, a+b-c \ge 0, -a+b+c \ge 0.$ Put u = (a/2, 0), v = (-a/2, 0), $w = ((c^2 - b^2)/(2a), (\sqrt{((a+b+c)\cdot(a+b-c)\cdot(a-b+c)\cdot(-a+b+c))})/(2a))$ in the case $a \neq 0$, and w = (b,0) in the case a = 0. Since $(M, f \circ \rho)$ is a metric space, we have $(f \circ \varrho)(u,v) \leq (f \circ \varrho)(u,w) + (f \circ \varrho)(v,w)$. Thus $f(a) \leq f(b) + f(c)$.

2.5. Lemma. Let $f \in \mathcal{M}$. Then

- (1) $\forall a, b \in \mathbb{R}_0^+ : f(a+b) \leq f(a) + f(b),$
- (2) $\forall a, b \in \mathbb{R}_0^+ : a \leq 2b \Rightarrow f(a) \leq 2 \cdot f(b)$.

Proof. Let $a, b \in \mathbb{R}_0^+$. Since $|(a+b)-a| \leq b \leq (a+b)+a$, we have $f(a+b) \leq f(a) + f(b)$. Let $a, b \in \mathbb{R}_0^+$, $a \leq 2b$. Since $|a-b| \leq b \leq a+b$, we have $f(a) \leq f(b) + f(b) = 2 \cdot f(b)$.

2.6. Corollary. Let $f \in \mathcal{M}$. Let $a \in \mathbb{R}_0^+$. Then $\forall n \in \mathbb{N} : f(a)/2^n \leq$ $f(a/2^n)$.

Proof. Since $a \leq 2 \cdot (a/2)$, we have $f(a) \leq 2 \cdot f(a/2)$, i.e. $f(a)/2 \leq f(a/2)$. Let $k \in \mathbb{N}$ be such that $f(a)/2^k \leq f(a/2^k)$. Since $a/2^k \leq 2 \cdot (a/2^{k+1})$, we obtain $f(a/2^k) \leq 2 \cdot f(a/2^{k+1})$. Hence $f(a)/2^{k+1} \leq f(a/2^k)/2 \leq$ $f(a/2^{k+1}).$

2.7. Theorem. Let $f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$. Then $f \in \mathscr{M}$ iff

- (1) $\forall a \in \mathbb{R}_0^+ : f(a) = 0 \Leftrightarrow a = 0,$ (2) $\forall a, b, c \in \mathbb{R}_0^+ : |a b| \le c \le a + b \Rightarrow f(a) \le f(b) + f(c).$

Proof. Necessity follows from 2.3 and 2.4. We show sufficiency. Let (M,ϱ) be a metric space. Let $x,y,z\in M$. Then $(f\circ\varrho)(x,y)=0\Leftrightarrow$ $\varrho(x,y) = 0 \Leftrightarrow x = y$. Put $\varrho(x,z) = a$, $\varrho(y,x) = b$ and $\varrho(y,z) = c$. Then $|a-b| \leq c \leq a+b$. By (2) we have $f(a) \leq f(b)+f(c)$, i.e. $(f \circ \varrho)(x,z) \leq (f \circ \varrho)(y,x) + (f \circ \varrho)(y,z)$. Thus $f \in \mathcal{M}$.

- **2.8. Corollary.** Let $f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$. Then $f \in \mathcal{M}$ iff
 - (i) $f(0) = 0 \& \exists a \in \mathbb{R}^+ : f(a) > 0$,
- (ii) $\forall a, b, c \in \mathbb{R}_0^+ : |a b| \leq c \leq a + b \Rightarrow f(a) \leq f(b) + f(c).$

Доказательство. Необходимость вытекает из 2.7, покажем достаточность. Пусть $x \in R^*$. Согласно свойству Архимеда $\exists n \in N: a/2^n \leq 2x$, из чего следует согласно 2.6, 2.5 (2), что $0 < f(a)/2^n \leq f(a/2^n) \leq 2 \cdot f(x)$. Тогда $\forall x \in R_0^*: f(x) = 0 \Leftrightarrow x = 0$ и в силу 2.7 $f \in \mathcal{M}$.

2.9. Теорема. Пусть $f \in \mathcal{M}$. Следующие утверждения эквивалентны:

- (1) f является непрерывной,
- (2) f является непрерывной в точке 0.
- (3) $\forall \varepsilon > 0 \exists x \in R^+: f(x) < \varepsilon$.

Доказательство. (2) \Rightarrow (1). Пусть $a \in R^+$ и пусть $\varepsilon > 0$. Тогда $\exists \gamma > 0$ $\forall x \in R_0^+$, $x < \gamma$: $f(x) < \varepsilon$. Положим $\delta = \min \{\gamma/2, a/2\}$. Поскольку $\delta < \gamma$, то $f(\delta) < \varepsilon$. Пусть $x \in R_0^+$, $|x-a| < \delta$. Так как $|x-a| \le \delta \le x+a$, то согласно 2.4 справедливо $f(x) \le f(a) + f(\delta)$, $f(a) \le f(x) + f(\delta)$. Значит, $|f(x) - f(a)| \le f(\delta) < \varepsilon$. Тогда $\forall a \in R^+ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in R_0^+$, $|x-a| < \delta$: $|f(x) - f(a)| < \varepsilon$, т. е. f является непрерывной на R^+ и согласно предположению следует, что f является непрерывной.

- $(3)\Rightarrow (2)$. Пусть $\varepsilon>0$. Тогда $\exists a\in R^*: f(a)< \varepsilon/2$. В силу 2.5 имеем $\forall x\in R_0^*$, $x\le 2a: f(x)\le 2\cdot f(a)< \varepsilon$. Положив $\delta=2a$, получим $\forall \varepsilon>0$ $\exists \delta>0$ $\forall x\in R_0^*$, $x<\delta: f(x)<\varepsilon$. Таким образом, f является непрерывной в точке 0. То, что $(1)\Rightarrow (3)$, очевидно.
- **2.10.** Следствие. Пусть $f \in \mathcal{M}$. Пусть f является разрывной. Тогда $\exists \varepsilon > 0$ $\forall x \in R^+ : f(x) \geqq \varepsilon$.
 - **2.11.** Утверждение. Пусть $f, g \in \mathcal{M}$. Тогда f + g, $\max(f, g) \in \mathcal{M}$.

Доказательство. Пусть $a \in R_0^+$. Тогда $(f+g)(a) = 0 \Leftrightarrow f(a) + g(a) = 0 \Leftrightarrow f(a) = 0 & g(a) = 0 \Leftrightarrow a = 0; (\max(f,g))(a) = 0 \Leftrightarrow \max(f(a),g(a)) = 0 \Leftrightarrow f(a) = 0 & g(a) = 0 \Leftrightarrow a = 0.$

Пусть $a,b,c\in R_0^*, |a-b|\le c\le a+b$. Тогда согласно $2.7\,(f+g)(a)=f(a)+g(a)\le f(b)+f(c)+g(b)+g(c)=(f+g)(b)+(f+g)(c); f(a)\le f(b)+f(c)\le \max(f(b),g(b))+\max(f(c),g(c)),g(a)\le g(b)+g(c)\le \max(f(b),g(b))+\max(f(c),g(c)),$ т. е. $(\max(f,g))(a)=\max(f(a),g(a))\le \max(f(b),g(b))+\max(f(c),g(c))=(\max(f,g))(b)+(\max(f,g))(c)$. Отсюда в силу 2.7 следует, что f+g, $\max(f,g)\in \mathcal{M}$.

- 2.12. Пример. Пусть $f: R_0^* \to R_0^*, f(x) = 3x 2 \cdot |x 1| + |x 2|$ для всех $x \in R_0^*$. Нетрудно проверить, что $f \in \mathcal{M}$, удовлетворяет условиям 1.1, является непрерывной и не является вогнутой.
- 2.13. Пример. Пусть $f: R_0^* \to R_0^*$, f(0) = 0, f(x) = [x] + 2 для всех x > 0. Тогда $f \in \mathcal{M}$, удовлетворяет условиям 1.1, является разрывной и не является вогнутой.

Proof. Necessity follows from 2.7. We show sufficiency. Let $x \in \mathbb{R}^+$. By the Archimedean property $\exists n \in \mathbb{N} : a/2^n \leq 2x$. By 2.6 and 2.5 (2) we obtain $0 < f(a)/2^n \leq f(a/2^n) \leq 2 \cdot f(x)$. Thus $\forall x \in \mathbb{R}_0^+ : f(x) = 0 \Leftrightarrow x = 0$, and by 2.7 we have $f \in \mathcal{M}$.

- **2.9. Theorem.** Let $f \in \mathcal{M}$. The following assertions are equivalent:
- (1) f is continuous,
- (2) f is continuous at the point 0,
- (3) $\forall \varepsilon > 0 \ \exists x \in \mathbb{R}^+ : f(x) < \varepsilon.$
- $\begin{array}{l} Proof. \ (2) \Rightarrow (1). \ \ \text{Let} \ \ a \in \mathbb{R}^+ \ \ \text{and let} \ \ \varepsilon > 0. \ \ \text{Then} \ \ \exists \gamma > 0 \ \ \forall x \in \mathbb{R}_0^+, \\ x < \gamma : f(x) < \varepsilon. \ \ \text{Put} \ \delta = \min \left\{ \gamma/2, a/2 \right\}. \ \ \text{Since} \ \delta < \gamma, \ \text{we have} \ f(\delta) < \varepsilon. \\ \text{Let} \ \ x \in \mathbb{R}_0^+, \ |x-a| < \delta. \ \ \text{Since} \ |x-a| \le \delta \le x+a \ \ \text{by} \ 2.4 \ \ \text{we have} \\ f(x) \le f(a) + f(\delta), \ f(a) \le f(x) + f(\delta). \ \ \text{Thus} \ |f(x) f(a)| \le f(\delta) < \varepsilon. \\ \text{This yields} \ \forall a \in \mathbb{R}^+ \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in \mathbb{R}_0^+, \ |x-a| < \delta : |f(x) f(a)| < \varepsilon, \\ \text{i.e.} \ \ f \ \ \text{is continuous} \ \ \text{on} \ \ \mathbb{R}^+ \ \ \text{and} \ \ \text{by the assumption} \ f \ \ \text{is continuous}. \end{array}$
- (3) \Rightarrow (2). Let $\varepsilon > 0$. Then $\exists a \in \mathbb{R}^+ : f(a) < \varepsilon/2$. By 2.5 we obtain $\forall x \in \mathbb{R}_0^+, x \leq 2a : f(x) \leq 2 \cdot f(a) < \varepsilon$. Put $\delta = 2a$. Then $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in \mathbb{R}_0^+, x < \delta : f(x) < \varepsilon$. Hence f is continuous at the point 0. (1) \Rightarrow (3) is evident.
- **2.10.** Corollary. Let $f \in \mathcal{M}$. Let f be discontinuous. Then $\exists \varepsilon > 0$ $\forall x \in \mathbb{R}^+ : f(x) \geq \varepsilon$.
- **2.11. Proposition.** Let $f, g \in \mathcal{M}$. Then f + g, $\max(f, g) \in \mathcal{M}$.

Proof. Let $a \in \mathbb{R}_0^+$. Then $(f+g)(a) = 0 \Leftrightarrow f(a) + g(a) = 0 \Leftrightarrow f(a) = 0 \& g(a) = 0 \Leftrightarrow a = 0$; $(\max(f,g))(a) = 0 \Leftrightarrow \max(f(a),g(a)) = 0 \Leftrightarrow f(a) = 0 \& g(a) = 0 \Leftrightarrow a = 0$.

Let $a, b, c \in \mathbb{R}_0^+$: $|a-b| \le c \le a+b$. By 2.7 we have $(f+g)(a) = f(a) + g(a) \le f(b) + f(c) + g(b) + g(c) = (f+g)(b) + (f+g)(c)$; $f(a) \le f(b) + f(c) \le \max(f(b), g(b)) + \max(f(c), g(c)), g(a) \le g(b) + g(c) \le \max(f(b), g(b)) + \max(f(c), g(c))$, i.e. $(\max(f, g))(a) = \max(f(a), g(a)) \le \max(f(b), g(b)) + \max(f(c), g(c)) = (\max(f, g))(b) + (\max(f, g))(c)$. By 2.7 we obtain f + g, $\max(f, g) \in \mathcal{M}$.

- **2.12. Example.** Let $f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$, $f(x) = 3x 2 \cdot |x 1| + |x 2|$ for each $x \in \mathbb{R}_0^+$. It is not difficult to verify that $f \in \mathcal{M}$, f satisfies the conditions of 1.1, f is continuous and f is not concave.
- **2.13. Example.** Let $f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$, f(0) = 0, f(x) = [x] + 2 for each x > 0. Then $f \in \mathcal{M}$, f satisfies the conditions of 1.1, f is discontinuous and f is not concave.

- **2.14.** Лемма. Пусть $f \in C(\langle a, b \rangle)$, где $a, b \in R$, a < b. Пусть f(a) = f(b). Тогда $\forall \varepsilon > 0 \; \exists u, v \in \langle a, b \rangle \colon 0 < |u v| < \varepsilon \; \& \; f(u) = f(v)$.
- **2.15.** Утверждение. Пусть $f \in C(\langle a,b \rangle)$, где $a,b \in R$, a < b. Тогда $\forall \varepsilon > 0 \exists x, \ y \in \langle a,b \rangle \colon 0 < |x-y| < \varepsilon \& (f(x)-f(y))'(x-y) = (f(a)-f(b))'(a-b).$ Доказательство. Определим $g \colon R \to R$ следующим образом $g(x) = f(x) + (f(a)-f(b)) \cdot (a-x)/(a-b)$ для всех $x \in R$. Тогда $g \in C(\langle a,b \rangle)$, g(a) = g(b) и в силу 2.14 имеем $\forall \varepsilon > 0 \exists x, \ y \in \langle a,b \rangle \colon 0 < |x-y| < \varepsilon \& g(x) = g(y)$. Таким образом, (f(x)-f(y))/(x-y) = (f(a)-f(b))/(a-b).
- **2.16.** Утверждение. Пусть $f \in \mathcal{M}$ и пусть d, $k \in R^+$. Определим $g \colon R_0^+ \to R_0^+$, g(x) = kx для $x \in \langle 0, d \rangle$, g(x) = f(x) для $x \in \langle d, \infty \rangle$. Тогда для того, чтобы $g \in \mathcal{M}$, необходимо и достаточно, чтобы $f(d) = kd \& \forall x, y \in \langle d, \infty \rangle$: $|f(x) f(y)| \leq k \cdot |x y|$.

Доказательство. 1. Пусть $g \in \mathcal{M}$. Так как g является непрерывной в точке 0, то согласно 2.9 f является непрерывной на $\langle d, \infty \rangle$. Тогда f(d) = kd. Предположим, что $\exists x, y \in \langle d, \infty \rangle$: $|f(x) - f(y)| > k \cdot |x - y|$. Ради определенности предположим x < y. Тогда в силу 2.15 $\exists u, v \in \langle x, y \rangle$: 0 < |u - v| < d & (f(u) - f(v))/(u - v) = (f(x) - f(y))/(x - y), откуда получим $|f(u) - f(v)| = |u - v| \cdot |f(x) - f(y)|/|x - y| > |u - v| \cdot k \cdot |x - y|/|x - y| = k \cdot |u - v|$. Положим a = u, b = v, c = |u - v|, тогда $|a - b| \le c \le a + b$, $|f(a) - f(b)| > k \cdot c$, т. е. |g(a) - g(b)| > g(c), а это в противоречии с тем, что $g \in \mathcal{M}$. Таким образом, $\forall x, y \in \langle d, \infty \rangle$: $|f(x) - f(y)| \le k \cdot |x - y|$.

- 2. Пусть $f(d) = kd \& \forall x, y \in (d, \infty): |f(x) f(y)| \le k \cdot |x y|$. Очевидно, что $\forall a \in R_0^+: g(a) = 0 \Leftrightarrow a = 0$. Пусть $a, b, c \in R_0^+, |a b| \le c \le a + b$.
- а. Если $a, b \in (0, d)$, то $c \in (0, 2d)$. Пусть $c \in (0, d)$, тогда $g(a) = ka \le kb + kc = g(b) + g(c)$. Если $c \in (d, 2d)$, то $kd f(c) = f(d) f(c) \le |f(c) f(d)| \le k \cdot |c d| = k \cdot (c d)$, откуда следует $-f(c) \le k \cdot (c 2d)$. Тогда $ka f(c) \le k \cdot (a + c 2d)$, из чего следует, что $g(a) = ka \le f(c) + k \cdot (a + c 2d) \le k \cdot (a + (a + b) 2d) + f(c) \le k \cdot (d + (d + b) 2d) + f(c) = g(b) + g(c)$.
- 6. Если $a \in (0, d)$, $b \in (d, \infty)$, то $c \in (0, \infty)$. Если $c \in (0, d)$, то $kd f(b) = f(d) f(b) \le |f(b) f(d)| \le k \cdot |b d| = k \cdot (b d)$, откуда следует, что $-f(b) \le k \le (b 2d)$. Тогда $ka f(b) \le k \cdot (a + b 2d)$, из чего следует $g(a) = ka \le |f(b)| + k \cdot (a + b 2d) \le f(b) + k \cdot (a + (a + c) 2d) \le f(b) + k \cdot (d + (d + c) 2d) = f(b) + kc = g(b) + g(c)$. Пусть $c \in (d, \infty)$. Согласно $2.5 \ \forall x \in R_0^+$: $d \le 2x \Rightarrow f(d) \le 2 \cdot f(x)$, значит, $\forall x \in R_0^+$: $x \ge d/2 \Rightarrow f(x) \ge f(d)/2 = kd/2$. Тогда g(a) = ka < kd = kd/2 + kd/2 = f(b) + f(c) = g(b) + g(c).
- в. Если $a \in \langle d, \infty \rangle$, $b \in \langle 0, d \rangle$ то $c \in \langle 0, \infty \rangle$. Если $c \in \langle 0, d \rangle$, то $f(a) kd f(a) f(d) \le |f(a) f(d)| \le k \cdot |a d| = ka kd$, откуда следует, что $f(a) \le ka$. Гогда $g(a) = f(a) \le ka \le kb + kc = g(b) + g(c)$. Если $c \in \langle d, \infty \rangle$,

- **2.14. Lemma.** Let $f \in C(\langle a, b \rangle)$, where $a, b \in \mathbb{R}$, a < b. Let f(a) = f(b). Then $\forall \varepsilon > 0 \ \exists u, v \in \langle a, b \rangle : 0 < |u v| < \varepsilon \ \& \ f(u) = f(v)$.
- **2.15. Proposition.** Let $f \in C(\langle a,b \rangle)$, where $a,b \in \mathbb{R}$, a < b. Then $\forall \varepsilon > 0 \ \exists x,y \in \langle a,b \rangle : 0 < |x-y| < \varepsilon \ \& \ (f(x)-f(y))/(x-y) = (f(a)-f(b))/(a-b)$.

Proof. Define $g: \mathbb{R} \to \mathbb{R}$ as follows $g(x) = f(x) + ((f(a) - f(b)) \cdot (a - x)/(a - b)$ for each $x \in \mathbb{R}$. Then $g \in C(\langle a, b \rangle)$, g(a) = g(b), thus by 2.14 we have $\forall \varepsilon > 0 \ \exists x, y \in \langle a, b \rangle : 0 < |x - y| < \varepsilon \ \& \ g(x) = g(y)$. Hence (f(x) - f(y))/(x - y) = (f(a) - f(b))/(a - b).

- **2.16. Proposition.** Let $f \in \mathcal{M}$. Let $d, k \in \mathbb{R}^+$. Define $g : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ as g(x) = kx for $x \in \langle 0, d \rangle$, g(x) = f(x) for $x \in \langle d, \infty \rangle$. Then $g \in \mathcal{M}$ iff $f(d) = kd \& \forall x, y \in \langle d, \infty \rangle : |f(x) f(y)| \le k \cdot |x y|$.
- *Proof.* 1. Let $g \in \mathcal{M}$. Since g is continuous at 0, by 2.9 we obtain that f is continuous on $\langle d, \infty \rangle$. Thus f(d) = kd. Suppose that $\exists x, y \in \langle d, \infty \rangle$: $|f(x) f(y)| > k \cdot |x y|$. Let x < y. (The opposite case is similar.)

Then by 2.15 $\exists u, v \in \langle x, y \rangle$: 0 < |u - v| < d & (f(u) - f(v))/(u - v) = (f(x) - f(y))/(x - y). Hence $|f(u) - f(v)| = |u - v| \cdot |f(x) - f(y)|/|x - y| > |u - v| \cdot k \cdot |x - y|/|x - y| = k \cdot |u - v|$. Put a = u, b = v, and c = |u - v|. Then $|a - b| \le c \le a + b$, and $|f(a) - f(b)| > k \cdot c$. Thus |g(a) - g(b)| > g(c), which

contradicts $g \in \mathcal{M}$. Therefore $\forall x, y \in \langle d, \infty \rangle : |f(x) - f(y)| \leq k \cdot |x - y|$. 2. Let $f(d) = k \cdot d \& \forall x, y \in \langle d, \infty \rangle : |f(x) - f(y)| \leq k \cdot |x - y|$. Evidently

2. Let $f(a) = k \cdot a \otimes \forall x, y \in (a, \infty) : |f(x) - f(y)| \le k \cdot |x - y|$. Evidently $\forall a \in \mathbb{R}_0^+ : g(a) = 0 \Leftrightarrow a = 0$. Let $a, b, c \in \mathbb{R}_0^+ : |a - b| \le c \le a + b$.

a. Suppose that $a, b \in (0, d)$. Then $c \in (0, 2d)$. If $c \in (0, d)$, then $g(a) = ka \le kb + kc = g(b) + g(c)$. If $c \in (d, 2d)$, then $kd - f(c) = f(d) - f(c) \le |f(c) - f(d)| \le k \cdot |c - d| = k \cdot (c - d)$, which yields $-f(c) \le k \cdot (c - 2d)$. Then $ka - f(c) \le k \cdot (a + c - 2d)$. Hence $g(a) = ka \le f(c) + k \cdot (a + c - 2d) \le k \cdot (a + (a + b) - 2d) + f(c) \le k$

 $k \cdot (d + (d + b) - 2d) + f(c) = g(b) + g(c).$ b. Suppose that $a \in (0, d)$, $b \in (d, \infty)$. Then $c \in (0, \infty)$. If $c \in (0, d)$, then $kd - f(b) = f(d) - f(b) \le |f(b) - f(d)| \le k \cdot |b - d| = k \cdot (b - d)$,

then $kd - f(b) = f(d) - f(b) \le |f(b) - f(d)| \le k \cdot |b - d| = k \cdot (b - d)$, which yields $-f(b) \le k \cdot (b - 2d)$. Then $ka - f(b) \le k \cdot (a + b - 2d)$. Thus $g(a) = ka \le f(b) + k \cdot (a + b - 2d) \le f(b) + k \cdot (a + (a + c) - 2d) \le f(b) + k \cdot (d + (d + c) - 2d) = f(b) + kc = g(b) + g(c)$. If $c \in \langle d, \infty \rangle$, by 2.5 we obtain $\forall x \in \mathbb{R}_0^+ : d \le 2x \Rightarrow f(d) \le 2 \cdot f(x)$. Hence $\forall x \in \mathbb{R}_0^+ : x \ge d/2 \Rightarrow f(x) \ge f(d)/2 = kd/2$. Then g(a) = ka < kd = kd/2 + kd/2 = f(b) + f(c) = g(b) + g(c).

c. Suppose that $a \in \langle d, \infty \rangle$, $b \in \langle 0, d \rangle$. Then $c \in \langle 0, \infty \rangle$. If $c \in \langle 0, d \rangle$, then $f(a) - kd = f(a) - f(d) \le |f(a) - f(d)| \le k \cdot |a - d| = ka - kd$, which yields $f(a) \le ka$. Then $g(a) = f(a) \le ka \le kb + kc = g(b) + g(c)$.

то $f(a) - f(c) \le |f(a) - f(c)| \le k \cdot |a - c| \le kb$. Следовательно, g(a) = f(a) $\le kb + f(c) = g(b) + g(c)$.

г. Если $a, b \in \langle d, \infty \rangle$, то $c \in \langle 0, \infty \rangle$. Если $c \in \langle 0, d \rangle$, то $f(a) - f(b) \leqq |f(a) - f(b)| \leqq k \cdot |a - b| \leqq kc$, откуда следует, что $g(a) = f(a) \leqq f(b) + kc = g(b) + g(c)$. Пусть $c \in \langle d, \infty \rangle$, тогда $g(a) = f(a) \leqq f(b) + f(c) = g(b) + g(c)$. Значит, $\forall a, b, c \in R_0^+, |a - b| \leqq c \leqq a + b \Rightarrow g(a) \leqq g(b) + g(c)$ и согласно 2.7 $g \in \mathcal{M}$.

- **2.17.** Следствие. Пусть $f \in \mathcal{M}$. Пусть $k \in R^+$. Пусть $g : R_0^+ \to R_0^+$, g(x) = kx для всех $x \in R_0^+$. Положим $\alpha = \inf \{x \in R^+ : f(x) = kx\}$, и $\beta = \alpha$, если $\alpha \in R^+$, $\beta = 0$, если $\alpha \in R^+$. Пусть
 - (1) $\forall x \in (0, \beta)$: $kx \leq f(x)$,
 - (2) $\forall x, y \in \langle \beta, \infty \rangle$: $|f(x) f(y)| \leq k \cdot |x y|$.

Тогда min (f, g) ∈ \mathcal{M} .

Доказательство. а. Пусть $\alpha \in R^+$. Сначала покажем, что $f(\alpha) = k\alpha$. Пусть $\varepsilon > 0$. Из определения α получим, что $\exists y \in R^+$: f(y) = ky & $\alpha \leq y < \alpha + \varepsilon \cdot (2k)$. Тогда $|f(y) - f(\alpha)| \leq k \cdot |y - \alpha|$; следовательно, $0 \leq f(\alpha) - f(y) + k \cdot |y - \alpha| \leq 2k \cdot |y - \alpha| < \varepsilon$, т. е. $0 \leq f(\alpha) - k\alpha < \varepsilon$. Тем самым мы показали, что для каждого $\varepsilon > 0$ имеет место $|f(\alpha) - k\alpha| < \varepsilon$, т. е. $f(\alpha) = k\alpha$. Пусть $x \in (\alpha, \infty)$. Тогда $f(x) \leq f(\alpha) + |f(x) - f(\alpha)| \leq f(\alpha) + k \cdot |x - \alpha| = k \cdot x = g(x)$. Значит, $\forall x \in (\alpha, \infty)$: $f(x) \leq g(x)$. Это показывает, что функция $\min(f, g)$ удовлетворяет условиям утверждениа 2.16, в силу которого $\min(f, g) \in \mathcal{M}$.

- б. Пусть $\alpha \in R^+$. Тогда для каждого $x \in R^+$ справедливо $f(x) = |f(x) f(0)| \le k \cdot |x 0| = kx = g(x)$; значит min $(f, g) = f \in \mathcal{M}$.
- 2.18. Пример. Пусть $f: R_0^* \to R_0^*$, f(x) = 2x для $x \in (0, 1)$, f(x) = 1 + 1/x для $x \in (1, \infty)$. Тогда $f \in \mathcal{M}$, является непрерывной и не удовлетворяет условиям 1.1. 1.3.
- 2.19. Пример. Пусть $f: R_0^+ \to R_0^+$, f(0) = 0, f(x) = |x-1| + 1 для x > 0. Тогда $f \in \mathcal{M}$, является разрывной и не удовлетворяет условиями 1.1, 1.3.
- 2.20. Пример. Пусть $f: R_0^+ \to R_0^+$, g(x) = x для $x \in (0, 2)$, g(x) = 1 для $x \in (2, \infty)$. Тогда g удовлетворяет условиям 2.5. і $g \in \mathcal{M}$.
- **2.21. Утверждение.** Пусть $\{f_i\}_{i=1}^{\infty}$ последовательность функций из \mathcal{M} , которая сходится. Пусть

 $\forall \in R^+$: $(\lim_{i \to \infty} f_i)(a) \neq 0$. Тогда $\lim_{i \to \infty} f_i \in \mathcal{M}$.

If $c \in (d, \infty)$, then $f(a) - f(c) \le |f(a) - f(c)| \le k \cdot |a - c| \le kb$. Thus $g(a) = f(a) \le kb + f(c) = g(b) + g(c)$.

- d. Suppose that $a,b \in \langle d,\infty \rangle$. Then $c \in \langle 0,\infty \rangle$. If $c \in \langle 0,d \rangle$, then $f(a)-f(b) \leqq |f(a)-f(b)| \leqq k \cdot |a-b| \leqq kc$, which yields $g(a)=f(a) \leqq f(b)+kc=g(b)+g(c)$. If $c \in \langle d,\infty \rangle$, then $g(a)=f(a) \leqq f(b)+f(c)=g(b)+g(c)$. Thus $\forall a,b,c \in \mathbb{R}_0^+: |a-b| \leqq c \leqq a+b \Rightarrow g(a) \leqq g(b)+g(c)$. By 2.7 we obtain $g \in \mathcal{M}$.
- **2.17. Corollary.** Let $f \in \mathcal{M}$. Let $k \in \mathbb{R}^+$. Let $g : \mathbb{R}_0^+ \to \mathbb{R}_0^+$, g(x) = kx for each $x \in \mathbb{R}_0^+$. Put $\alpha = \inf\{x \in \mathbb{R}^+ : f(x) = kx\}$, $\beta = \alpha$, if $\alpha \in \mathbb{R}^+$, $\beta = 0$, if $\alpha \notin \mathbb{R}^+$. Suppose that
 - $(1) \ \forall x \in (0,\beta) : kx \le f(x),$
- (2) $\forall x, y \in \langle \beta, \infty \rangle : |f(x) f(y)| \le k \cdot |x y|$. Then $\min(f, g) \in \mathcal{M}$.

Proof. a. Suppose that $\alpha \in \mathbb{R}^+$. First we show that $f(\alpha) = k\alpha$. Let $\varepsilon > 0$. By definition of α we obtain $\exists y \in \mathbb{R}^+ : f(y) = ky \& \alpha \leq y < \alpha + \varepsilon/(2k)$. Thus $|f(y) - f(\alpha)| \leq k \cdot |y - \alpha|$. Hence $0 \leq f(\alpha) - f(y) + k \cdot |y - \alpha| \leq 2k \cdot |y - \alpha| < \varepsilon$, i.e. $0 \leq f(\alpha) - k\alpha < \varepsilon$. This shows that for each $\varepsilon > 0$ we have $|f(\alpha) - k\alpha| < \varepsilon$, i.e. $f(\alpha) = k\alpha$. Let $x \in \langle \alpha, \infty \rangle$. Then $f(x) \leq f(\alpha) + |f(x) - f(\alpha)| \leq f(\alpha) + k \cdot |x - \alpha| = k \cdot x = g(x)$. Hence $\forall x \in \langle \alpha, \infty \rangle : f(x) \leq g(x)$. Since $\min(f, g)$ satisfies the assumptions of 2.16, we have $\min(f, g) \in \mathscr{M}$.

- b. Suppose that $\alpha \notin \mathbb{R}^+$. Then for each $x \in \mathbb{R}^+$ we have $f(x) = |f(x) f(0)| \le k \cdot |x 0| = kx = g(x)$, which yields $\min(f, g) = f \in \mathcal{M}$.
- **2.18.** Example. Let $f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$, f(x) = 2x, if $x \in (0,1)$, f(x) = 1 + 1/x, if $x \in (1,\infty)$. Then $f \in \mathcal{M}$, f is continuous, but f does not satisfy the assumptions of 1.1, 1.3.
- **2.19. Example.** Let $f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$, f(0) = 0, f(x) = |x-1| + 1 for each x > 0. Then $f \in \mathcal{M}$, f is discontinuous, but f does not satisfy the assumptions of 1.1, 1.3.
- **2.20. Example.** Let $f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$, f(x) = x, if $x \in \langle 0, 2 \rangle$, f(x) = 1, if $x \in (2, \infty)$. Then f satisfies the conditions of 2.5, but $f \notin \mathcal{M}$.
- **2.21. Proposition.** Let $\{f_i\}_{i=1}^{\infty}$ be a convergent sequence of functions $f_i \in \mathcal{M}$. Suppose that

 $\forall a \in \mathbb{R}^+ : (\lim_{i \to \infty} f_i)(a) \neq 0. \ Then \lim_{i \to \infty} f_i \in \mathscr{M}.$

Доказательство. Пусть $a, b, c \in R_0^+$, $|a-b| \le c \le a+b$. Поскольку $\forall i \in N: f_i \in \mathcal{M}, \text{ то } \forall i \in N: f_i(a) \le f_i(b) + f_i(c)$, и значит

$$(\lim_{i \to \infty} f_i)(a) = \lim_{i \to \infty} (f_i(a)) \le \lim_{i \to \infty} (f_i(b) + f_i(c)) =$$

$$= (\lim_{i \to \infty} f_i)(b) + (\lim_{i \to \infty} f_i)(c).$$

согласно 2.7. $\lim_{i \to \infty} f_i \in \mathcal{M}$.

2.22. Следствие. Пусть

$$\sum_{i=1}^{\infty} f_i$$

ряд функций из \mathcal{M} , сходящийстя к функции f. Тогда $f \in \mathcal{M}$.

Доказательство. Пусть $\{s_n\}_{n=1}^{\infty}$ — последовательность частичных сумм ряда

$$\sum_{i=1}^{\infty} f_i$$
.

Согласно 2.11. $\forall i \in \mathbb{N}: s_i \in \mathcal{M}$. Пусть $a \in \mathbb{R}^+$, тогда $\forall i \in \mathbb{N}: f_i(a) > 0$, откуда следует, что

$$\forall n \in \mathbb{N}: s_n(a) = \sum_{i=1}^n f_i(a) \ge f_i(a),$$

т. е.

$$f(a) = \lim_{n \to \infty} (s_n(a)) \ge f_1(a) > 0.$$

Следовательно, согласно 2.21. $f \in \mathcal{U}$.

2.23. Утверждение. Пусть $\mathcal{L} \subset \mathcal{M}$, $\mathcal{L} = \emptyset$. Пусть $\forall x \in R^+$ множество $\mathcal{L}_x = \{f(x): f \in \mathcal{L}\}$ является ограниченным. Определим функцию $\sup \mathcal{L} : R^+_0 \to R^+_0$, $\sup \mathcal{L}(x) = \sup \mathcal{L}_x$. Тогда $\sup \mathcal{L} \in \mathcal{M}$.

Доказательство. Поскольку $\forall x \in R^+: \mathscr{L}_x \subset R^+$, то $\sup \mathscr{L}_x > 0$, т. е. $\forall x \in R^+: (\sup \mathscr{L})(x) = 0$. Отсюда следует, что $\forall a \in R^+: (\sup \mathscr{L})(a) = 0 \Leftrightarrow a = 0$. Пусть $a, b, c \in R^+, |a-b| \le c \le a+b$, тогда $\forall f \in \mathscr{L}: f(a) \le f(b) + f(c) \le (\sup \mathscr{L})(b) + (\sup \mathscr{L})(c)$, т. е. $(\sup \mathscr{L})(a) \le (\sup \mathscr{L})(b) + (\sup \mathscr{L})(c)$. Согласно 2.7 $\sup \mathscr{L} \in \mathscr{M}$.

3. Отношение метрик ϱ , $f \circ \varrho$

3.1. Определение. Пусть (P, ϱ) , (Q, σ) являются метрическими пространствами. Пусть $a \in P$.

Proof. Let $a, b, c \in \mathbb{R}_0^+ : |a - b| \le c \le a + b$. Since $\forall i \in \mathbb{N} : f_i \in \mathcal{M}$, we have $\forall i \in \mathbb{N} : f_i(a) \le f_i(b) + f_i(c)$, which yields

$$(\lim_{i \to \infty} f_i)(a) = \lim_{i \to \infty} (f_i(a)) \le \lim_{i \to \infty} (f_i(b) + f_i(c))$$
$$= (\lim_{i \to \infty} f_i)(b) + (\lim_{i \to \infty} f_i)(c).$$

By 2.7 we have $\lim_{i \to \infty} f_i \in \mathcal{M}$.

2.22. Corollary. Let

$$\sum_{i=1}^{\infty} f_i$$

be a series of functions $f_i \in \mathcal{M}$ which converges to a function f. Then $f \in \mathcal{M}$.

Proof. Let $\{s_n\}_{n=1}^{\infty}$ be a sequence of partial sums of the series

$$\sum_{i=1}^{\infty} f_i.$$

By 2.11 we have $\forall i \in \mathbb{N} : s_i \in \mathscr{M}$. Let $a \in \mathbb{R}^+$. Then $\forall i \in \mathbb{N} : f_i(a) > 0$, which yields

$$\forall n \in \mathbb{N} : s_n(a) = \sum_{i=1}^n f_i(a) \ge f_1(a),$$

i.e.

$$f(a) = \lim_{n \to \infty} (s_n(a)) \ge f_1(a) > 0.$$

Therefore by 2.21 we have $f \in \mathcal{M}$.

2.23 Proposition. Let $\mathscr{L} \subset \mathscr{M}$, $\mathscr{L} \neq \emptyset$. Let $\forall x \in \mathbb{R}^+$ the set $\mathscr{L}_x = \{f(x) : f \in \mathscr{L}\}$ be bounded. Define the function $\sup \mathscr{L} : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ as $(\sup \mathscr{L})(x) = \sup \mathscr{L}_x$. Then $\sup \mathscr{L} \in \mathscr{M}$.

Proof. Since $\forall x \in \mathbb{R}^+ : \mathcal{L}_x \subset \mathbb{R}^+$, we have $\sup \mathcal{L}_x > 0$, i.e. $\forall x \in \mathbb{R}^+ : (\sup \mathcal{L})(x) \neq 0$. Thus $\forall a \in \mathbb{R}^+_0 : (\sup \mathcal{L})(a) = 0 \Leftrightarrow a = 0$. Let $a, b, c \in \mathbb{R}^+_0 : |a - b| \leq c \leq a + b$. Then $\forall f \in \mathcal{L} : f(a) \leq f(b) + f(c) \leq (\sup \mathcal{L})(b) + (\sup \mathcal{L})(c)$. Thus $(\sup \mathcal{L})(a) \leq (\sup \mathcal{L})(b) + (\sup \mathcal{L})(c)$. By 2.7 we obtain $\sup \mathcal{L} \in \mathcal{M}$.

- 3. Interrelations between ϱ and $f \circ \varrho$
- **3.1 Definition.** Let (P, ϱ) , (Q, σ) be metric spaces. Let $a \in P$.

Отображение $f:P \to Q$ называется $\varrho = \sigma$ -непрерывным в точке а тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in P, \ \varrho(x, a) < \delta : \sigma(f(x), f(a)) < \varepsilon.$$

Отображение $f: P \to Q$ называется $\varrho - \sigma$ -непрерывным тогда и только тогда, когда $\varrho - \sigma$ -непрерывно в каждой точке.

Отображение $f\colon P\to Q$ называется равномерно $\varrho-\sigma$ -непрерывным тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in P, \rho(x, y) < \delta : \sigma(f(x), f(y)) < \varepsilon$$
.

Пусть ϱ , σ — метрики на множестве M. Метрики ϱ , σ называются топологически эквивалентными (равномерно эквивалентными) тогда и только тогда, когда тождественное отображение $\mathrm{id}(M)$: $M \to M$ является ϱ — σ -непрерывным и σ — ϱ -непрерывным (равномерно ϱ — σ -непрерывным и равномерно ε — ϱ -непрерывным). ([1], стр. 232).

3.2. Лемма. Пусть (M, ϱ) является метрическим пространством. Пусть $f \in \mathcal{M}$ является непрерывной функцией. Тогда метрики ϱ , $f \circ \varrho$ равномерно эквивалентны.

Доказательство. Пусть $\varepsilon > 0$. Из того, что функция f непрерывна в точке 0, следует $\exists \delta > 0 \ \forall x \in \langle 0, \delta \rangle : f(x) < \varepsilon$. Пусть $x, y \in M$, $\varrho(x, y) < \delta$. Тогда $f(\varrho(x,y)) < \varepsilon$. Значит, $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in M$, $\varrho(x,y) < \delta : (f \circ \varrho)(x,y) < \varepsilon$, т. е. отображение id $(M): M \to M$ является равномерно $\varrho - f \circ \varrho$ -непрерывным. Пусть $\varepsilon > 0$. Согласно $2.5 \ \forall x \in R_0^+: 2\varepsilon \le 2x \Rightarrow f(2\varepsilon) \le 2 \cdot f(x)$. Положим $\delta = f(2\varepsilon)/2 > 0$, тогда $\forall x \in R_0^+: f(x) < \delta \Rightarrow x < \varepsilon$. Пусть $x, y \in M$, $(f \circ \varrho)(x,y) < \delta$, тогда $\varrho(x,y) < \varepsilon$. Значит, $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in M$, $(f \circ \varrho)(x,y) < \varepsilon$, т. е. отображение id $(M): M \to M$ является равномерно $f \circ \varrho - \varrho$ -непрерывным. Поэтому метрики ϱ , $f \circ \varrho$ равномерно эквивалентны.

3.3. Теорема. Пусть (M,ϱ) — метрическое пространство. Пусть существует предельная точка а множества M относительно метрики ϱ . Пусть $f \in \mathcal{M}$. Тогда метрики ϱ , $f \circ \varrho$ топологически эквивалентны тогда и только тогда, когда f непрерывна.

Доказательство. Пусть метрики ϱ , $f \circ \varrho$ топологически эквивалентны. Пусть $\varepsilon > 0$. Отображение id $(M) \colon M \to M \varrho - f \circ \varrho$ -непрерывно, поэтому $\exists \delta > 0 \ \forall x \in M$, $\varrho(x,a) < \delta \colon (f \circ \varrho) \ (x,a) < \varepsilon$. Так как $\forall \varepsilon' > 0 \ \exists x \in M$, $x \neq a \colon \varrho(x,a) < \varepsilon'$, то положив $\varepsilon' = \delta$, получим $\exists x \in M$, $x \neq a \colon \varrho(x,a) < \delta$. Отсюда следует, что $\forall \varepsilon > 0 \ \exists y \in R' \colon f(y) < \varepsilon$, то-есть согласно 2.9. функция f непрерывна. Если f непрерывна, то в силу 3.2 метрики ϱ , $f \circ \varrho$ топологически эквивалентны.

3.4. Теорема. Пусть (M, ϱ) — метрическое пространство. Пусть не сущес-

We say that a function $f: P \to Q$ is ρ - σ -continuous at the point a iff

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in P, \ \varrho(x, a) < \delta : \sigma(f(x), f(a)) < \varepsilon.$$

We say that $f: P \to Q$ is ϱ - σ -continuous iff it is ϱ - σ -continuous at each point.

We say that $f: P \to Q$ is uniformly ϱ - σ -continuous iff

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in P, \ \varrho(x, y) < \delta : \sigma(f(x), f(y)) < \varepsilon.$$

Let ϱ , σ be metrics on the set M. We say that the metrics ϱ , σ are topologically equivalent (uniformly equivalent) iff the identity function $\mathrm{id}(M): M \to M$ is both ϱ - σ -continuous and σ - ϱ -continuous (uniformly ϱ - σ -continuous and uniformly σ - ϱ -continuous). ([1] p. 232.)

3.2 Lemma. Let (M, ϱ) be a metric space. Let $f \in \mathcal{M}$ be continuous. Then the metrics ϱ , $f \circ \varrho$ are uniformly equivalent.

Proof. Let $\varepsilon>0$. From the continuity of f at 0 we obtain that $\exists \delta>0$ $\forall x\in (0,\delta): f(x)<\varepsilon$. Let $x,y\in M,\ \varrho(x,y)<\delta$. Then $f(\varrho(x,y))<\varepsilon$. Thus $\forall \varepsilon>0$ $\exists \delta>0$ $\forall x,y\in M,\varrho(x,y)<\delta: (f\circ\varrho)(x,y)<\varepsilon$, i.e. the function $\mathrm{id}(M)$ is uniformly $\varrho\cdot(f\circ\varrho)$ -continuous. Let $\varepsilon>0$. By 2.5 we have $\forall x\in\mathbb{R}^+_0: 2\varepsilon\leq 2x\Rightarrow f(2\varepsilon)\leq 2\cdot f(x)$. Put $\delta=f(2\varepsilon)/2>0$. Then $\forall x\in\mathbb{R}^+_0: f(x)<\delta\Rightarrow x<\varepsilon$. Let $x,y\in M,\ (f\circ\varrho)(x,y)<\delta$. Then $\varrho(x,y)<\varepsilon$. Thus $\forall \varepsilon>0$ $\exists \delta>0$ $\forall x,y\in M,\ (f\circ\varrho)(x,y)<\delta:\varrho(x,y)<\varepsilon$, i.e. the function $\mathrm{id}(M)$ is uniformly $(f\circ\varrho)$ - ϱ -continuous.

3.3. Theorem. Let (M, ϱ) be a metric space. Suppose that there is an accumulation point a of the set M with respect to the metric ϱ . Let $f \in \mathcal{M}$. Then the metrics ϱ , $f \circ \varrho$ are topologically equivalent iff f is continuous.

Proof. Suppose that the metrics ϱ , $f\circ\varrho$ are topologically equivalent. Let $\varepsilon>0$. Since the function $\mathrm{id}(M)$ is $\varrho\cdot(f\circ\varrho)$ -continuous, we have $\exists \delta>0$ $\forall x\in M,\ \varrho(x,a)<\delta:(f\circ\varrho)(x,a)<\varepsilon.$ Since $\forall \varepsilon'>0\ \exists x\in M,x\neq a:\varrho(x,a)<\varepsilon'$, by putting $\varepsilon'=\delta$ we obtain $\exists x\in M,x\neq a:\varrho(x,a)<\delta.$ Hence $\forall \varepsilon>0\ \exists y\in\mathbb{R}^+:f(y)<\varepsilon$, i.e. by 2.9 the function f is continuous. If f is continuous, by 3.2 we obtain that the metrics ϱ , $f\circ\varrho$ are topologically equivalent.

3.4. Theorem. Let (M, ϱ) be a metric space. Suppose that there is no

твуст предельная точка множества M относительно метрики ϱ . Пусть $f \in \mathcal{M}$. Гогда метрики ϱ , $f \circ \varrho$ топологически эквивалентны.

Доказательство. Пусть f разрывна. Согласно 2.10 $\exists \xi \in R^* \ \forall y \in R^* \colon f(y) \ge \xi$. Пусть $x \in M$, $\varepsilon > 0$. Из условий теоремы следует, что $\exists \delta > 0 \ \forall z \in M$, $z \ne x \colon \varrho(x,z) \ge \delta$. Это означает, что $\forall z \in M$, $\varrho(x,z) < \delta \colon x = z$, т.е. что $f(\varrho(x,z)) = 0 < \varepsilon$. Таким образом, $\forall x \in M \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in M, \ \varrho(x,y) < \delta \colon (f \circ \varrho) \ (x,y) < \varepsilon$, т. е. отображение id $(M) \colon M \to M \ \varrho - f \circ \varrho$ -непрерывно. Пусть $x \in M$, $\varepsilon > 0$. Пусть $\delta < \xi$. Тогла $\forall y \in M, \ f(\varrho(x,y)) < \delta \colon \varrho(x,y)$

Пусть $x \in M$, $\varepsilon > 0$. Пусть $\delta < \xi$. Гогда $\forall y \in M$, $f(\varrho(x,y)) < \delta$: $\varrho(x,y) = 0 < \varepsilon$. Следовательно $\forall x \in M \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in M$, $(f \circ \varrho) \ (x,y) < \delta$: $\varrho(x,y) < \varepsilon$, т. е. отображение id (M): $M \to M f \circ \varrho - \varrho$ -непрерывно, и поэтому метрики $\varrho, f \circ \varrho$ топологически эквивалентны. Если f непрерывна, то согласно $3.2 \ \varrho, f \circ \varrho$ топологически эквивалентны.

3.5. Теорема. Пусть (M, ϱ) __ метрическое пространство. Пусть $\forall \varepsilon > 0$ $\exists x, y \in M, x \neq y$: $\varrho(x, y) < \varepsilon$. Пусть $f \in M$. Тогда метрики ϱ , $f \circ \varrho$ равномерно эквивалентны тогда и только тогда, когда f непрерывна.

Доказательство. Пусть метрики ϱ , $f \circ \varrho$ равномерно эквивалентны. Пусть $\varepsilon > 0$. Тогда $\exists \delta > 0 \ \forall x, \ y \in M, \ \varrho(x,y) < \delta$: $(f \circ \varrho) \ (x,y) < \varepsilon$. Поскольку $\exists x, y \in M, x \neq y$: $\varrho(x,y) < \delta$, то $f(\varrho(x,y)) < \varepsilon$. Значит, $\forall \varepsilon > 0 \ \exists y \in R^+$: $f(y) < \varepsilon$, т. е. согласно 2.9. f непрерывна.

Если f непрерывна, то в силу 3.2 ϱ , $f \circ \varrho$ равномерно эквивалентны.

3.6. Теорема. Пусть (M, ϱ) — метрическое пространство. Пусть $\exists a > 0$ $\forall x, y \in M, x \neq y : \varrho(x, y) \ge a$. Пусть $f \in \mathcal{M}$. Тогда метрики $\varrho, f \circ \varrho$ равномерно эквивалентны.

Доказательство. Пусть $f \in \mathcal{M}$ разрывна. Тогда согласно $2.10 \ \exists \xi \in R^+ \ \forall x \in R^+ : f(x) \geq \xi$. Пусть $\epsilon > 0$. Положим $\delta = a$. Тогда $\forall x, y \in M$: $\varrho(x, y) < \delta \Rightarrow x = y$, т. е. $f(\varrho(x, y)) = 0 < \epsilon$. Поскольку $\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x, y \in M, \varrho(x, y) < \delta$: $(f \circ \varrho) \ (x, y) < \epsilon$, то отображение id (M) равномерно $\varrho - f \circ \varrho$ -непрерывно. Пусть $\epsilon > 0$. Положим $\delta = \xi / 2$. Тогда $\forall x, y \in M$: $f(\varrho(x, y)) < \delta \Rightarrow \varrho(x, y) = 0 < \epsilon$. Так как $\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x, y \in M, (f \circ \varrho) \ (x, y) < \delta$: $\varrho(x, y) < \epsilon$, то отображение id (M): $M \to M$ равномерно $f \circ \varrho - \varrho$ -непрерывно. Поэтому метрики $\varrho, f \circ \varrho$ равномерно эквивалентны. Если f непрерывна, то согласно $f \circ \varrho = \varrho$ равномерно эквивалентны.

3.7. Пример. Пусть $M = \{1/n: n \in N\}, \varrho(x, y) = |x - y| \, \forall x, y \in M$. Пусть $f \in \mathcal{M}$ разрывна. Согласно 3.4 ϱ , $f \circ \varrho$ топологически эквивалентны и согласно 3.5. не являются равномерно эквивалентными.

accumulation point of the set M with respect to the metric ϱ . Let $f \in \mathcal{M}$. Then the metrics ϱ , $f \circ \varrho$ are topologically equivalent.

Proof. Suppose that f is discontinuous. By 2.10 we have $\exists \xi \in \mathbb{R}^+$ $\forall y \in \mathbb{R}^+ : f(y) \geq \xi$. Let $x \in M$, $\varepsilon > 0$. From the assumptions we obtain that $\exists \delta > 0 \ \forall z \in M, z \neq x : \varrho(x,z) \geq \delta$. Then $\forall z \in M, \varrho(x,z) < \delta : x = z$, which yields $f(\varrho(x,z)) = 0 < \varepsilon$. Thus $\forall x \in M \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in M, \varrho(x,y) < \delta : (f \circ \varrho)(x,y) < \varepsilon$, i.e. the function $\mathrm{id}(M)$ is ϱ - $(f \circ \varrho)$ -continuous.

Let $x \in M$, $\varepsilon > 0$. Let $\delta < \xi$. Then $\forall y \in M, f(\varrho(x,y)) < \delta : \varrho(x,y) = 0 < \varepsilon$. Thus $\forall x \in M \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in M, (f \circ \varrho)(x,y) < \delta : \varrho(x,y) < \varepsilon$, i.e. the function $\mathrm{id}(M)$ is $(f \circ \varrho) - \varrho$ -continuous. Hence ϱ , $f \circ \varrho$ are topologically equivalent. If f is continuous, by 3.2 the metrics ϱ , $f \circ \varrho$ are topologically equivalent.

3.5. Theorem. Let (M, ϱ) be a metric space. Let $\forall \varepsilon > 0 \ \exists x, y \in M, x \neq y : \varrho(x,y) < \varepsilon$. Let $f \in \mathcal{M}$. Then ϱ , $f \circ \varrho$ are uniformly equivalent iff f is continuous.

Proof. Suppose that ϱ , $f \circ \varrho$ are uniformly equivalent. Let $\varepsilon > 0$. Then $\exists \delta > 0 \ \forall x,y \in M, \varrho(x,y) < \delta : (f \circ \varrho)(x,y) < \varepsilon$. Since $\exists x,y \in M, x \neq y : \varrho(x,y) < \delta$, we have $f(\varrho(x,y)) < \varepsilon$. Hence $\forall \varepsilon > 0 \ \exists y \in \mathbb{R}^+ : f(y) < \varepsilon$, i.e. by 2.9 f is continuous.

If f is continuous, by 3.2 the metrics ρ , $f \circ \rho$ are uniformly equivalent.

3.6. Theorem. Let (M, ϱ) be a metric space. Suppose that $\exists a > 0$ $\forall x, y \in M, x \neq y : \varrho(x, y) \geq a$. Let $f \in \mathcal{M}$. Then ϱ , $f \circ \varrho$ are uniformly equivalent.

Proof. Suppose that $f \in \mathcal{M}$ is discontinuous. By 2.10 we have $\exists \xi \in \mathbb{R}^+ \forall x \in \mathbb{R}^+ : f(x) \geq \xi$. Let $\varepsilon > 0$. Put $\delta = a$. Then $\forall x,y \in M : \varrho(x,y) < \delta \Rightarrow x = y$, which yields $f(\varrho(x,y)) = 0 < \varepsilon$. Since $\forall \varepsilon > 0$ $\exists \delta > 0 \ \forall x,y \in M, \varrho(x,y) < \delta : (f \circ \varrho)(x,y) < \varepsilon$, the function $\mathrm{id}(M)$ is uniformly ϱ - $(f \circ \varrho)$ -continuous. Let $\varepsilon > 0$. Put $\delta = \xi/2$. Then $\forall x,y \in M: f(\varrho(x,y)) < \delta \Rightarrow \varrho(x,y) = 0 < \varepsilon$. Since $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x,y \in M, (f \circ \varrho)(x,y) < \delta : \varrho(x,y) < \varepsilon$, we obtain that the function $\mathrm{id}(M)$ is uniformly $(f \circ \varrho)$ - ϱ -continuous. Thus the metrics ϱ , $f \circ \varrho$ are uniformly equivalent. If f is continuous, by 3.2 we have that ϱ , $f \circ \varrho$ are uniformly equivalent.

3.7. Example. Let $M = \{1/n; n \in \mathbb{N}\}$, $\varrho(x,y) = |x-y|$ for each $x,y \in M$. Let $f \in \mathscr{M}$ be discontinuous. By 3.4 ϱ , $f \circ \varrho$ are topologically equivalent, but by 3.5 they are not uniformly equivalent.

ЛИТЕРАТУРА

- [1] JARNÍK, V.: Differenciální počet II. Academia, Praha 1976.
- [2] KAPLANSKY, I.: Set theory and metric spaces. Allyn and Bacon, Boston 1972.
- [3] КЕЛЛИ, И.Л.: Общая топология. Наука Москва 1968.
- [4] NAGY, J.: Vybrané partie z moderní matematiky. SNTL, Praha 1976.

Поступило 3. 11. 1978

Ян Борсик Беланскя штврть 550/Б 033 01 Липтовский Хрядок

Йозеф Добош 966 54 Тековскэ Немце **261**

References

- [1] Jarník, V., Diferenciální počet II, Academia, Praha, 1976.
- [2] Kaplansky, I., Set theory and metric spaces, Allyn and Bacon, Boston, 1972.
- [3] Kelley, J. L., General Topology, Russian translation, Nauka, Moscow, 1968.
- [4] Nagy, J., Vybrané partie z moderní matematiky, SNTL, Praha, 1976.

Received November 3, 1978