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FUNCTIONS WHOSE COMPOSITION

WITH EVERY METRIC IS A METRIC

Ján Borsík—Jozef Doboš

When examining the properties of a given metric space (M,%), it is often
adequate to exchange the metric % for a different one which is uniformly
or topologically equivalent with it. Because the metric is a function,
new metric can be obtained by its composition with some function
f : R+0 → R+0 . In literature, several sufficient conditions are known:
If the function f obtains zero if and only if in zero, it is nondecreasing and
concave [2, p. 70]; If function f obtains zero if and only if in zero, it is
nondecreasing and subadditive [3, p. 178], [4, p. 149]. For functions which
meet these conditions, there are some known results about equivalence of
given metrics: if function f is continuous at point zero, then the metrics
%, f ◦ % are uniformly equivalent [4, p. 228], if function f is continuous,
then metrics %, f ◦ % are topologically equivalent [3, p. 178]. In the first
section of the work we examine the sufficient conditions. Necessary and
sufficient condition can be found in the second section where the set M
of all functions of which the composition with every metric is metric is
explored. The third section investigates the connections of metrics %, f ◦%
for f ∈M .

1. Sufficient Conditions

1.1. Proposition. Let (M,%) be a metric space. Let a function
f : R+0 → R+0 have the following properties (where R+0 = {x ∈ R : x = 0}):

(1) ∀a ∈ R+0 : f(a) = 0⇔ a = 0,
(2) ∀a, b ∈ R+0 : f(a+ b) 5 f(a) + f(b),
(3) ∀a, b ∈ R+0 : a 5 b⇒ f(a) 5 f(b).

Then f ◦ % is a metric on M .

Proof. [4; p. 149].

1.2. Proposition. Let (M,%) be a metric space. Let a function
f : R+0 → R+0 have the following properties:
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(1) ∀a ∈ R+0 : f(a) = 0⇔ a = 0,
(2) ∀p, q ∈ R+0 , p+ q = 1 ∀a, b ∈ R+ : f(pa+ qb) = p · f(a) + q · f(b).

Then f ◦ % is a metric on M .

Proof. Let x, y ∈ R+0 , x < y. By the substitution q = x/y, a = 0,
b = y in (2) we obtain y · f(x) − x · f(y) = 0. By the substitution
p = x/y, a = x, b = x+y in (2) and by the preceding inequality we obtain
f(x+ y) 5 f(x) + f(y)− (y · f(x)− x · f(y))/(y − x) 5 f(x) + f(y).

By the substitution p = 1/2, a = 0, b = 2x in (2) we obtain
f(x+ x) 5 f(x) + f(x). Thus ∀x, y ∈ R+0 : f(x+ y) 5 f(x) + f(y). Now
suppose that there are x, y ∈ R+0 such that x < y and f(x) > f(y). Put
z = (y ·f(x)−x ·f(y))/(f(x)−f(y)) ∈ R+ (where R+ = {x ∈ R : x > 0}).
By the substitution p = f(y)/f(x), a = x, b = z in (2) we obtain
(1− f(y)/f(x)) · f(z) 5 0, i.e. f(z) 5 0, which contradicts (1). This
yields

∀x, y ∈ R+0 : x 5 y ⇒ f(x) 5 f(y).

By 1.1 f ◦ % is a metric.

1.3. Proposition. Let (M,%) be a metric space. Let a function
f : R+0 → R+0 have the following properties:

(1) f(0) = 0,
(2) ∃a ∈ R+ ∀x ∈ R+ : f(x) ∈ 〈a, 2a〉.

Then f ◦ % is a metric.

Proof. It is clear that f ◦ % has 1. and 2. property of metric. Let
x, y, z ∈ M . If x 6= y 6= z 6= x, then (f ◦ %)(x, y) 5 2a = a + a 5
(f ◦ %)(y, x) + (f ◦ %)(y, z). In the other cases the triangle inequality is
evident. Thus f ◦ % is a metric.

2. Necessary and Sufficient Condition

2.1. Denote by M the set of all functions f : R+0 → R+0 with the
following property: for each metric space (M,%) (M,f ◦ %) is a metric
space.

2.2. Proposition. (M , ◦) is a monoid.

Proof. Let f, g ∈ M . Let (M,%) be an arbitrary metric space. Then
(M, g ◦ %) is a metric space. Thus (M,f ◦ (g ◦ %)) = (M, (f ◦ g) ◦ %) is a
metric space, which yields f ◦ g ∈M .

2.3. Lemma. Let f ∈M . Then

∀a ∈ R+0 : f(a) = 0⇔ a = 0.

Proof. Put M = R, %(x, y) = |x− y| for each x, y ∈ R. Then (M,f ◦ %)
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is a metric space and ∀a ∈ R+0 : %(a, 0) = a. Let a ∈ R+0 . Then
0 = f(a) = (f ◦ %)(a, 0)⇔ a = 0.

2.4. Lemma. Let f ∈M . Then

∀a, b, c ∈ R+0 : |a− b| 5 c 5 a+ b⇒ f(a) 5 f(b) + f(c).

Proof. Put M = R×R, %((x1, y1), (x2, y2)) =
√

((x1−x2)2+(y1−y2)2) for
each x1, y1, x2, y2 ∈ R. Let a, b, c ∈ R+, |a−b| 5 c 5 a+b. Then a+b+c =
0, a−b+c = 0, a+b−c = 0, −a+b+c = 0. Put u = (a/2, 0), v = (−a/2, 0),
w =

(
(c2− b2)/(2a), (

√
((a+b+c)·(a+b−c)·(a−b+c)·(−a+b+c)))/(2a)

)

in the case a 6= 0, and w = (b, 0) in the case a = 0. Since (M,f ◦ %) is a
metric space, we have (f ◦ %)(u, v) 5 (f ◦ %)(u,w) + (f ◦ %)(v, w). Thus
f(a) 5 f(b) + f(c).

2.5. Lemma. Let f ∈M . Then
(1) ∀a, b ∈ R+0 : f(a+ b) 5 f(a) + f(b),
(2) ∀a, b ∈ R+0 : a 5 2b⇒ f(a) 5 2 · f(b).

Proof. Let a, b ∈ R+0 . Since |(a + b) − a| 5 b 5 (a + b) + a, we have
f(a + b) 5 f(a) + f(b). Let a, b ∈ R+0 , a 5 2b. Since |a − b| 5 b 5 a + b,
we have f(a) 5 f(b) + f(b) = 2 · f(b).

2.6. Corollary. Let f ∈ M . Let a ∈ R+0 . Then ∀n ∈ N : f(a)/2n 5
f (a/2n).

Proof. Since a 5 2·(a/2), we have f(a) 5 2·f (a/2), i.e. f(a)/2 5 f (a/2).
Let k ∈ N be such that f(a)/2k 5 f

(
a/2k

)
. Since a/2k 5 2 · (a/2k+1),

we obtain f
(
a/2k

)
5 2 · f

(
a/2k+1

)
. Hence f(a)/2k+1 5 f(a/2k)/2 5

f
(
a/2k+1

)
.

2.7. Theorem. Let f : R+0 → R+0 . Then f ∈M iff
(1) ∀a ∈ R+0 : f(a) = 0⇔ a = 0,
(2) ∀a, b, c ∈ R+0 : |a− b| 5 c 5 a+ b⇒ f(a) 5 f(b) + f(c).

Proof. Necessity follows from 2.3 and 2.4. We show sufficiency. Let
(M,%) be a metric space. Let x, y, z ∈ M . Then (f ◦ %)(x, y) = 0 ⇔
%(x, y) = 0 ⇔ x = y. Put %(x, z) = a, %(y, x) = b and %(y, z) = c.
Then |a − b| 5 c 5 a + b. By (2) we have f(a) 5 f(b) + f(c), i.e.
(f ◦ %)(x, z) 5 (f ◦ %)(y, x) + (f ◦ %)(y, z). Thus f ∈M .

2.8. Corollary. Let f : R+0 → R+0 . Then f ∈M iff
(i) f(0) = 0 & ∃a ∈ R+ : f(a) > 0,
(ii) ∀a, b, c ∈ R+0 : |a− b| 5 c 5 a+ b⇒ f(a) 5 f(b) + f(c).
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Proof. Necessity follows from 2.7. We show sufficiency. Let x ∈ R+. By
the Archimedean property ∃n ∈ N : a/2n 5 2x. By 2.6 and 2.5 (2) we
obtain 0 < f(a)/2n 5 f (a/2n) 5 2 · f(x). Thus ∀x ∈ R+0 : f(x) = 0 ⇔
x = 0, and by 2.7 we have f ∈M .

2.9. Theorem. Let f ∈M . The following assertions are equivalent:
(1) f is continuous,
(2) f is continuous at the point 0,
(3) ∀ε > 0 ∃x ∈ R+ : f(x) < ε.

Proof. (2) ⇒ (1). Let a ∈ R+ and let ε > 0. Then ∃γ > 0 ∀x ∈ R+0 ,
x < γ : f(x) < ε. Put δ = min {γ/2, a/2}. Since δ < γ, we have f(δ) < ε.
Let x ∈ R+0 , |x − a| < δ. Since |x − a| 5 δ 5 x + a by 2.4 we have
f(x) 5 f(a) + f(δ), f(a) 5 f(x) + f(δ). Thus |f(x) − f(a)| 5 f(δ) < ε.
This yields ∀a ∈ R+ ∀ε > 0 ∃δ > 0 ∀x ∈ R+0 , |x−a| < δ : |f(x)−f(a)| < ε,
i.e. f is continuous on R+ and by the assumption f is continuous.

(3) ⇒ (2). Let ε > 0. Then ∃a ∈ R+ : f(a) < ε/2. By 2.5 we obtain
∀x ∈ R+0 , x 5 2a : f(x) 5 2 · f(a) < ε. Put δ = 2a. Then ∀ε > 0 ∃δ > 0
∀x ∈ R+0 , x < δ : f(x) < ε. Hence f is continuous at the point 0.

(1) ⇒ (3) is evident.

2.10. Corollary. Let f ∈ M . Let f be discontinuous. Then ∃ε > 0
∀x ∈ R+ : f(x) = ε.

2.11. Proposition. Let f, g ∈M . Then f + g, max(f, g) ∈M .

Proof. Let a ∈ R+0 . Then (f + g)(a) = 0 ⇔ f(a) + g(a) = 0 ⇔ f(a) =
0 & g(a) = 0 ⇔ a = 0; (max(f, g))(a) = 0 ⇔ max(f(a), g(a)) = 0 ⇔
f(a) = 0 & g(a) = 0⇔ a = 0.

Let a, b, c ∈ R+0 : |a − b| 5 c 5 a + b. By 2.7 we have (f + g)(a) =
f(a) + g(a) 5 f(b) + f(c) + g(b) + g(c) = (f + g)(b) + (f + g)(c);
f(a) 5 f(b)+f(c) 5 max(f(b), g(b))+max(f(c), g(c)), g(a) 5 g(b)+g(c) 5
max(f(b), g(b))+max(f(c), g(c)), i.e. (max(f, g))(a) = max(f(a), g(a)) 5
max(f(b), g(b)) + max(f(c), g(c)) = (max(f, g))(b) + (max(f, g))(c). By
2.7 we obtain f + g, max(f, g) ∈M .

2.12. Example. Let f : R+0 → R+0 , f(x) = 3x − 2 · |x − 1| + |x − 2|
for each x ∈ R+0 . It is not difficult to verify that f ∈ M , f satisfies the
conditions of 1.1, f is continuous and f is not concave.

2.13. Example. Let f : R+0 → R+0 , f(0) = 0, f(x) = [x] + 2 for each
x > 0. Then f ∈ M , f satisfies the conditions of 1.1, f is discontinuous
and f is not concave.
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2.14. Lemma. Let f ∈ C(〈a, b〉), where a, b ∈ R, a < b. Let f(a) = f(b).
Then ∀ε > 0 ∃u, v ∈ 〈a, b〉 : 0 < |u− v| < ε & f(u) = f(v).

2.15. Proposition. Let f ∈ C(〈a, b〉), where a, b ∈ R, a < b. Then
∀ε > 0 ∃x, y ∈ 〈a, b〉 : 0 < |x − y| < ε & (f(x) − f(y))/(x − y) =
(f(a)− f(b))/(a− b).

Proof. Define g : R → R as follows g(x) = f(x) + ((f(a) − f(b)) · (a −
x)/(a − b) for each x ∈ R. Then g ∈ C(〈a, b〉), g(a) = g(b), thus by 2.14
we have ∀ε > 0 ∃x, y ∈ 〈a, b〉 : 0 < |x − y| < ε & g(x) = g(y). Hence
(f(x)− f(y))/(x− y) = (f(a)− f(b))/(a− b).
2.16. Proposition. Let f ∈ M . Let d, k ∈ R+. Define g : R+0 → R+0
as g(x) = kx for x ∈ 〈0, d), g(x) = f(x) for x ∈ 〈d,∞). Then g ∈M iff
f(d) = kd & ∀x, y ∈ 〈d,∞) : |f(x)− f(y)| 5 k · |x− y|.
Proof. 1. Let g ∈M . Since g is continuous at 0, by 2.9 we obtain that f
is continuous on 〈d,∞). Thus f(d) = kd. Suppose that ∃x, y ∈ 〈d,∞) :
|f(x) − f(y)| > k · |x − y|. Let x < y. (The opposite case is similar.)
Then by 2.15 ∃u, v ∈ 〈x, y〉 : 0 < |u − v| < d & (f(u) − f(v))/(u − v) =
(f(x)−f(y))/(x−y). Hence |f(u)−f(v)| = |u−v| · |f(x)−f(y)|/|x−y| >
|u−v|·k ·|x−y|/|x−y| = k ·|u−v|. Put a = u, b = v, and c = |u−v|. Then
|a−b| 5 c 5 a+b, and |f(a)−f(b)| > k ·c. Thus |g(a)−g(b)| > g(c), which
contradicts g ∈M . Therefore ∀x, y ∈ 〈d,∞) : |f(x)− f(y)| 5 k · |x− y|.

2. Let f(d) = k ·d & ∀x, y ∈ 〈d,∞) : |f(x)−f(y)| 5 k ·|x−y|. Evidently
∀a ∈ R+0 : g(a) = 0⇔ a = 0. Let a, b, c ∈ R+0 : |a− b| 5 c 5 a+ b.

a. Suppose that a, b ∈ 〈0, d). Then c ∈ 〈0, 2d). If c ∈ 〈0, d),
then g(a) = ka 5 kb + kc = g(b) + g(c). If c ∈ 〈d, 2d), then
kd − f(c) = f(d) − f(c) 5 |f(c) − f(d)| 5 k · |c − d| = k · (c − d),
which yields −f(c) 5 k · (c − 2d). Then ka − f(c) 5 k · (a + c − 2d).
Hence g(a) = ka 5 f(c) + k · (a+ c− 2d) 5 k · (a+ (a+ b)− 2d) + f(c) 5
k · (d+ (d+ b)− 2d) + f(c) = g(b) + g(c).

b. Suppose that a ∈ 〈0, d), b ∈ 〈d,∞). Then c ∈ 〈0,∞). If c ∈ 〈0, d),
then kd − f(b) = f(d) − f(b) 5 |f(b) − f(d)| 5 k · |b − d| = k · (b − d),
which yields −f(b) 5 k · (b − 2d). Then ka − f(b) 5 k · (a + b − 2d).
Thus g(a) = ka 5 f(b) + k · (a+ b− 2d) 5 f(b) + k · (a+ (a+ c)− 2d) 5
f(b) + k · (d + (d + c) − 2d) = f(b) + kc = g(b) + g(c). If c ∈ 〈d,∞),
by 2.5 we obtain ∀x ∈ R+0 : d 5 2x ⇒ f(d) 5 2 · f(x). Hence
∀x ∈ R+0 : x = d/2 ⇒ f(x) = f(d)/2 = kd/2. Then g(a) = ka <
kd = kd/2 + kd/2 = f(b) + f(c) = g(b) + g(c).

c. Suppose that a ∈ 〈d,∞), b ∈ 〈0, d). Then c ∈ 〈0,∞). If c ∈ 〈0, d),
then f(a)−kd = f(a)−f(d) 5 |f(a)−f(d)| 5 k · |a−d| = ka−kd, which
yields f(a) 5 ka. Then g(a) = f(a) 5 ka 5 kb+ kc = g(b) + g(c).
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If c ∈ 〈d,∞), then f(a) − f(c) 5 |f(a) − f(c)| 5 k · |a − c| 5 kb. Thus
g(a) = f(a) 5 kb+ f(c) = g(b) + g(c).

d. Suppose that a, b ∈ 〈d,∞). Then c ∈ 〈0,∞). If c ∈ 〈0, d), then
f(a)− f(b) 5 |f(a)− f(b)| 5 k · |a− b| 5 kc, which yields g(a) = f(a) 5
f(b) + kc = g(b) + g(c). If c ∈ 〈d,∞), then g(a) = f(a) 5 f(b) + f(c) =
g(b) + g(c). Thus ∀a, b, c ∈ R+0 : |a− b| 5 c 5 a+ b⇒ g(a) 5 g(b) + g(c).
By 2.7 we obtain g ∈M .

2.17. Corollary. Let f ∈M . Let k ∈ R+. Let g : R+0 → R+0 , g(x) = kx
for each x ∈ R+0 . Put α = inf{x ∈ R+ : f(x) = kx}, β = α, if α ∈ R+,
β = 0, if α /∈ R+. Suppose that

(1) ∀x ∈ (0, β) : kx 5 f(x),
(2) ∀x, y ∈ 〈β,∞) : |f(x)− f(y)| 5 k · |x− y|.

Then min(f, g) ∈M .

Proof. a. Suppose that α ∈ R+. First we show that f(α) = kα. Let ε > 0.
By definition of α we obtain ∃y ∈ R+ : f(y) = ky & α 5 y < α+ ε/(2k).
Thus |f(y) − f(α)| 5 k · |y − α|. Hence 0 5 f(α) − f(y) + k · |y − α| 5
2k · |y − α| < ε, i.e. 0 5 f(α) − kα < ε. This shows that for each
ε > 0 we have |f(α) − kα| < ε, i.e. f(α) = kα. Let x ∈ 〈α,∞). Then
f(x) 5 f(α) + |f(x) − f(α)| 5 f(α) + k · |x − α| = k · x = g(x). Hence
∀x ∈ 〈α,∞) : f(x) 5 g(x). Since min(f, g) satisfies the assumptions of
2.16, we have min(f, g) ∈M .

b. Suppose that α /∈ R+. Then for each x ∈ R+ we have f(x) =
|f(x)− f(0)| 5 k · |x− 0| = kx = g(x), which yields min(f, g) = f ∈M .

2.18. Example. Let f : R+0 → R+0 , f(x) = 2x, if x ∈ 〈0, 1),
f(x) = 1 + 1/x, if x ∈ 〈1,∞). Then f ∈ M , f is continuous, but f
does not satisfy the assumptions of 1.1, 1.3.

2.19. Example. Let f : R+0 → R+0 , f(0) = 0, f(x) = |x − 1| + 1 for
each x > 0. Then f ∈M , f is discontinuous, but f does not satisfy the
assumptions of 1.1, 1.3.

2.20. Example. Let f : R+0 → R+0 , f(x) = x, if x ∈ 〈0, 2〉, f(x) = 1, if
x ∈ (2,∞). Then f satisfies the conditions of 2.5, but f /∈M .

2.21. Proposition. Let {fi}∞i=1 be a convergent sequence of functions
fi ∈M . Suppose that

∀a ∈ R+ : ( lim
i→∞

fi)(a) 6= 0. Then lim
i→∞

fi ∈M .
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Proof. Let a, b, c ∈ R+0 : |a − b| 5 c 5 a + b. Since ∀i ∈ N : fi ∈ M , we
have ∀i ∈ N : fi(a) 5 fi(b) + fi(c), which yields

( lim
i→∞

fi)(a) = lim
i→∞

(fi(a)) 5 lim
i→∞

(fi(b) + fi(c))

= ( lim
i→∞

fi)(b) + ( lim
i→∞

fi)(c).

By 2.7 we have lim
i→∞

fi ∈M .

2.22. Corollary. Let
∞∑

i=1

fi

be a series of functions fi ∈ M which converges to a function f . Then
f ∈M .

Proof. Let {sn}∞n=1 be a sequence of partial sums of the series

∞∑

i=1

fi.

By 2.11 we have ∀i ∈ N : si ∈M . Let a ∈ R+. Then ∀i ∈ N : fi(a) > 0,
which yields

∀n ∈ N : sn(a) =
n∑

i=1

fi(a) = f1(a),

i.e.
f(a) = lim

n→∞
(sn(a)) = f1(a) > 0.

Therefore by 2.21 we have f ∈M .

2.23 Proposition. Let L ⊂ M , L 6= ∅. Let ∀x ∈ R+ the set
Lx = {f(x) : f ∈ L } be bounded. Define the function sup L : R+0 → R+0
as (sup L )(x) = sup Lx. Then sup L ∈M .

Proof. Since ∀x ∈ R+ : Lx ⊂ R+, we have sup Lx > 0, i.e. ∀x ∈
R+ : (sup L )(x) 6= 0. Thus ∀a ∈ R+0 : (sup L )(a) = 0 ⇔ a = 0. Let
a, b, c ∈ R+0 : |a − b| 5 c 5 a + b. Then ∀f ∈ L : f(a) 5 f(b) + f(c) 5
(sup L )(b) + (sup L )(c). Thus (sup L )(a) 5 (sup L )(b) + (sup L )(c).
By 2.7 we obtain sup L ∈M .

3. Interrelations between % and f ◦ %
3.1 Definition. Let (P, %), (Q, σ) be metric spaces. Let a ∈ P .
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We say that a function f : P → Q is %-σ-continuous at the point a iff

∀ε > 0 ∃δ > 0 ∀x ∈ P, %(x, a) < δ : σ(f(x), f(a)) < ε.

We say that f : P → Q is %-σ-continuous iff it is %-σ-continuous at each
point.

We say that f : P → Q is uniformly %-σ-continuous iff

∀ε > 0 ∃δ > 0 ∀x, y ∈ P, %(x, y) < δ : σ(f(x), f(y)) < ε.

Let %, σ be metrics on the set M . We say that the metrics %, σ are
topologically equivalent (uniformly equivalent) iff the identity function
id(M) : M → M is both %-σ-continuous and σ-%-continuous (uniformly
%-σ-continuous and uniformly σ-%-continuous). ([1] p. 232.)

3.2 Lemma. Let (M,%) be a metric space. Let f ∈ M be continuous.
Then the metrics %, f ◦ % are uniformly equivalent.

Proof. Let ε > 0. From the continuity of f at 0 we obtain that ∃δ > 0
∀x ∈ 〈0, δ) : f(x) < ε. Let x, y ∈ M , %(x, y) < δ. Then f(%(x, y)) < ε.
Thus ∀ε > 0 ∃δ > 0 ∀x, y ∈ M,%(x, y) < δ : (f ◦ %)(x, y) < ε, i.e. the
function id(M) is uniformly %-(f ◦ %)-continuous. Let ε > 0. By 2.5 we
have ∀x ∈ R+0 : 2ε 5 2x ⇒ f(2ε) 5 2 · f(x). Put δ = f(2ε)/2 > 0. Then
∀x ∈ R+0 : f(x) < δ ⇒ x < ε. Let x, y ∈ M , (f ◦ %)(x, y) < δ. Then
%(x, y) < ε. Thus ∀ε > 0 ∃δ > 0 ∀x, y ∈M, (f ◦ %)(x, y) < δ : %(x, y) < ε,
i.e. the function id(M) is uniformly (f ◦ %)-%-continuous.

3.3. Theorem. Let (M,%) be a metric space. Suppose that there is
an accumulation point a of the set M with respect to the metric %. Let
f ∈ M . Then the metrics %, f ◦ % are topologically equivalent iff f is
continuous.

Proof. Suppose that the metrics %, f ◦ % are topologically equivalent. Let
ε > 0. Since the function id(M) is %-(f ◦ %)-continuous, we have ∃δ > 0
∀x ∈ M , %(x, a) < δ : (f ◦ %)(x, a) < ε. Since ∀ε′ > 0 ∃x ∈ M,x 6= a :
%(x, a) < ε′, by putting ε′ = δ we obtain ∃x ∈ M,x 6= a : %(x, a) < δ.
Hence ∀ε > 0 ∃y ∈ R+ : f(y) < ε, i.e. by 2.9 the function f is continuous.
If f is continuous, by 3.2 we obtain that the metrics %, f◦% are topologically
equivalent.

3.4. Theorem. Let (M,%) be a metric space. Suppose that there is no
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accumulation point of the set M with respect to the metric %. Let f ∈M .
Then the metrics %, f ◦ % are topologically equivalent.

Proof. Suppose that f is discontinuous. By 2.10 we have ∃ξ ∈ R+
∀y ∈ R+ : f(y) = ξ. Let x ∈ M , ε > 0. From the assumptions we obtain
that ∃δ > 0 ∀z ∈M, z 6= x : %(x, z) = δ. Then ∀z ∈M,%(x, z) < δ : x = z,
which yields f(%(x, z)) = 0 < ε. Thus ∀x ∈ M ∀ε > 0 ∃δ > 0
∀y ∈ M,%(x, y) < δ : (f ◦ %)(x, y) < ε, i.e. the function id(M) is %-
(f ◦ %)-continuous.

Let x ∈ M , ε > 0. Let δ < ξ. Then ∀y ∈ M,f(%(x, y)) < δ : %(x, y) =
0 < ε. Thus ∀x ∈M ∀ε > 0 ∃δ > 0 ∀y ∈M, (f ◦ %)(x, y) < δ : %(x, y) < ε,
i.e. the function id(M) is (f ◦ %)-%-continuous. Hence %, f ◦ % are
topologically equivalent. If f is continuous, by 3.2 the metrics %, f ◦ %
are topologically equivalent.

3.5. Theorem. Let (M,%) be a metric space. Let ∀ε > 0 ∃x, y ∈M,x 6=
y : %(x, y) < ε. Let f ∈ M . Then %, f ◦ % are uniformly equivalent iff f
is continuous.

Proof. Suppose that %, f ◦ % are uniformly equivalent. Let ε > 0.
Then ∃δ > 0 ∀x, y ∈ M,%(x, y) < δ : (f ◦ %)(x, y) < ε. Since
∃x, y ∈ M,x 6= y : %(x, y) < δ, we have f(%(x, y)) < ε. Hence ∀ε > 0
∃y ∈ R+ : f(y) < ε, i.e. by 2.9 f is continuous.

If f is continuous, by 3.2 the metrics %, f ◦ % are uniformly equivalent.

3.6. Theorem. Let (M,%) be a metric space. Suppose that ∃a > 0
∀x, y ∈ M , x 6= y : %(x, y) = a. Let f ∈M . Then %, f ◦ % are uniformly
equivalent.

Proof. Suppose that f ∈ M is discontinuous. By 2.10 we have ∃ξ ∈ R+
∀x ∈ R+ : f(x) = ξ. Let ε > 0. Put δ = a. Then ∀x, y ∈ M :
%(x, y) < δ ⇒ x = y, which yields f(%(x, y)) = 0 < ε. Since ∀ε > 0
∃δ > 0 ∀x, y ∈ M,%(x, y) < δ : (f ◦ %)(x, y) < ε, the function id(M)
is uniformly %-(f ◦ %)-continuous. Let ε > 0. Put δ = ξ/2. Then
∀x, y ∈ M : f(%(x, y)) < δ ⇒ %(x, y) = 0 < ε. Since ∀ε > 0 ∃δ > 0
∀x, y ∈ M, (f ◦ %)(x, y) < δ : %(x, y) < ε, we obtain that the function
id(M) is uniformly (f ◦ %)-%-continuous. Thus the metrics %, f ◦ % are
uniformly equivalent. If f is continuous, by 3.2 we have that %, f ◦ % are
uniformly equivalent.

3.7. Example. Let M = {1/n;n ∈ N}, %(x, y) = |x − y| for each
x, y ∈ M . Let f ∈M be discontinuous. By 3.4 %, f ◦ % are topologically
equivalent, but by 3.5 they are not uniformly equivalent.
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