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SUMS OF QUASICONTINUOUS
FUNCTIONS WITH CLOSED GRAPHS*

Abstract

We prove that every real-valued Bi function f defined on a separa-
ble metric space X is the sum of three quasicontinuous functions with
closed graphs, and there is a B] function which is not the sum of t-
wo quasicontinuous functions with closed graphs. Consequently, if X is
a separable metric space which is a Baire space in the strong sense, then
the next three properties are equivalent: (1) f is a B} function, (2) f is
the sum of (at least) three quasicontinuous functions with closed graphs,
and (3) f is a piccewise continuous function.

1 Introduction

Let X be a topological space. A function f : X — R is said to be quasi-
continuous (cliquish) at a point z € X if for every neighborhood U of z and
every € > 0 there is an open set G C U such that |f(z) — f(y)| < € for each
yeG (|fly) — f(z)] < € for cach y,z € G). A function f is quasicontinu-
ous (cliquish) if it is such at each point. A function f : X — R has closed
graph if the set {(z, f(z)) : # € X} is a closed subset of X x R. A function
f: X — Ris piecewise continuous if there are closed sets X, C X,n € Nsuch
that X = |J>”, X,, and the restriction f]X, is continuous for each n € N.
A function f: X — Ris a function of the class Bf (Bairc-one-star function)
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if for every closed set £ C X there exists an open set G C X such Chan
FNOG#@and fI(FNG)is continuous ([5]).

If F C RY is a family of real functions. then we denote by G(F) the
group generated by F. Further, denote by Q. 4. BY, and P the familics of all
quasicontinuous functions, closed graph functions. Baire-one-star function,
and piecewise continuous functions (in RX), respectively.

Evidently. the sumn of two quasicontinuous functions with closed graph neg(
not be such. In this paper we will characterize the group generated by rey)

4

quasicontinuous functions with closed graph. More precisely, we shall shoy
that

G(QU) =B} =D = QU + QU + QU

for separable metric spaces which are Baire spaces in the strong sense. iy
particular. for complete separable metric spaces. Further, we shall show tha
QU + QU # B} (in spite of the facts that every B function on a metric space
is the sum of two functions with closed graphs. [3]. and that every clignish
function. and thus also every B; function. is the sum of two quasicontinuous
functions. [1]).

Recall that X is a Baire space in the strong sense (or totally nonmeager)
if every nonempty closed subspace of X is a Baire space ([4]).

We use the following notation in the paper. Let X be a metric space with

a metric function d : X x X' = [0,oc). For r € X. A, BC X and £ > 0 we
define

diam(A) = sup{d(a.b) : a.b € A}.
dist(z. A) = inf{d(r.a) : a € A}.
dist(A. B) = inf{d(a.b) :a € A&l € B},
S(r.g) ={y € X :d(r.y) < e},
S(d,e) ={y € X :dist(4,y) < €}.

For a subset A of X', Cl(:1) and Int(A) denote the closure and the interior
of A, respectively. The letters N. Q, and R stand for the set of natural. rational.
and real numbers. respectively. For a function f:X = R, D(f) denotes the set

of all discontinuity points of f. The quantifier V>n abbreviates the quantifiers
(3m)(Vn > m).

2 A Characterization of G(QU)

Lemma 2.1. Let X be a topological space and let f : X — R be a function.
The following implications hold:
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(1) If X is a Baire space, and f is piecewise continuous, then D(f) is no-
where dense.

(2) If f is a B} function, then D(f) is nowhere dense.

(3) If f s a quasicontinuous function with closed graph, then D(f) is no-
where dense.

(4) [ is a B} function if and only if D(f1F) is nowhere dense in F for every
closed set F' in X.

PROOF. To obtain a contradiction (in the proofs of conditions (1)- (3)) let us
assume that there is an open set G # () such that D(f) is dense in G.

(1) Let X = U?f:o X, where X, is closed and f].X, is continuous for each
n € N. Since G = |J;_, G N X, is not meager, there is m € N such that the
sct G N X, has nonempty interior H. Then f is continuous at every point
x € H which is a contradiction because H N D(f) # 0.

(2) Let F' = CI(G). Since f is a B} function, there is an open set H cCX
such that F'N H # 0 and f[(F N H) is continuous. Then also G N H # () and
(GNVH)ND(f) =0 which is a contradiction.

(3) Let us fix € G. Since f is quasicontinuous, therc is an open set,
IT C G such that |f(z) — f(y)| < 1for each y € H. Then f[H is bounded and
has closed graph (in H x R). Therefore f[H is continuous and f is continuous
at every poiut & € H which contradicts the choice of the set G.

(4) If f is a By function and F is closed in X. then f[F is a B function
in I and by condition (2) D(f[F') is nowhere dense in F. Conversely, if [ is
not a By function, then by the definition there exists a closed set F such that
D(f]F) is dense in F. O

Condition (3) in the previous lemuna can be easily proved for cliquish func-
tions with closed graphs.

A natural question is what is the relation between these three generalized
continuity properties of functions. We can make several simple observations.

Lemma 2.2. If X is a topological space and f : X — K has closed graph,
then f is piecewise continuous.

PROOF. The inverse images of compact subscts of R are closed subsets of X
and hence it is enough to take X, = f=1([—n,n]). O

In [5] it is shown that the inclusion Bf C P holds for metric spaces and
the inclusion P C B} holds for all complete metric spaces. Next we will see
that the equality holds for Baire metric spaces in the strong sense while this
1s not true for all Baire metric spaces.

Lemuna 2.3. If X is a Baire space in the strong sense, then every piecewise
conbinuous function f: X = R is a B function.
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PRrOOF. Let X = U;’;O Xn where X, is closed and f1X, is continugy for
cach n € IN. Let FC X be a closed set. Then F = U:':O(F N X,) ang
since Fis a Baire space there is an open set G in X and n € N such that

0#FNGCX, and f[(FNG) is continuous. .

Remark 2.4. In spite of Lemma 2.1(3) and Lemma 2.3, it is not true thqy m

a Baire space every quasicontinuous function with closed graph is q BY fune.
tiomn.

PROOF. Let Q = {r, : n € N} and let A = {z, m : n,m € N} be a sequence
of distinct irrational numbers. We define a metric d on X = QU A by

d(z,y) = |z -yl for z,y € Q.
d(.cp' mymn) =1/(n+ 1) + |rp — 7| and
A(Lryomys Tngimg) = 1/(my + 1) +1/(ma + 1) + |rny — oyl

Notice that {z,.,»} is an open set in X. A is a discrete open dense subset of X,
and X is a Baire space. We define f: X = R by f(r,.) = f(@nm) = n. Then
[ is a quasicontinuous function with closed graph and f is not a B} function
because Q is closed in X and f[(Q N G) is not continuous for any open set G
in X such that NG # 0. -

The aim of the paper is the proof of the next theorem.

Theorem 2.5. Let X' be a separable metric space which is a Baire space in
the strong sensc and let f : X — R. The following conditions are equivalent:

(1) f is the sum of three quasicontinuous functions with closed graphs.

(2) f is the sum of at least three quasicontinuous functions with closed graph-
s.

(3) f 1is piecewise continuous.

(4) f is of the class By .

PROOF. The implication (1) — (2) is trivial, the implication (2) — (3) is a con-
sequence of Lemma 2.2, and the equality P+P = P. The implication (3) — (4)
is Lemma 2.3, and the implication (4) — (1) is Theorem 4.1. O

Remark 2.6. The assumption X is a Baire space in the strong sense can

be neither removed nor replaced by the assumption that X is a Baire spuce,
see Remark 2.4.

Remark 2.7. The separability assumption is necessury for the proof of the
implication (4) — (1), namely for the proof of Lemma 3.3.
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Remark 2.8. The sum of three functions cannot be replaced by the sum of
two functions in condition (1) of Theorem 2.5. Namely, the function f defined
by f(z) =1,z =0, and f(x) =0, if x # 0, is a B} function, but it is not

the sum of two quasicontinuous functions with closed graphs.

PROOF. Assume that f = fi + fo where fi, fo are quasicontinuous functions
with closed graphs. Then f;(z) = —fao(x) for every z # 0. As f; is quasi-
continuous at 0, there exists a sequence {z,}%2, convergent to 0 such that
limpsoc f1(zn) = f1(0) and then lim, oo f2(x,) = —f1(0). Then, as f, has
closed graph, f2(0) = —f1(0) and we have this contradiction: 1 = f(0) =
£1(0) + £2(0) = 0. 0

Problem 2.9. Characterize the family QU + QU.
We will need the next easy property of quasicontinuous functions.

Lemma 2.10. If f : X = R, K is an open set, and x € CI(K) is such that
fICI(K) is quasicontinuous at x, then f is quasicontinuous at .

3 Systems of Closed Nowhere Dense Sets

Lemma 3.1 ([1], Lemma 3.1). Let X be a metric space, F C X be a closed
nowhere dense set and let G C X be an open set such that F C CI(G). Then
there is a family K = U, , K, of nonempty open subsets of X such that the
following conditions hold:

(i) The set E,, = |J{CUK) : K € Ky} is closed and E, C S(F,2/n)NG \ F
for every n € N.
(ii) (Vz € X \ F)(3V a neighburhood of z) [{K € K: 1V NCIK) #0}| < 1.
(i) (Ve € F)(VV a neighborhood of z)(V*°n)(3K € K,) CI(K) C V.

In particular, CI(J,—q En) = Upeo En U F.

PrRoor. The construction is by induction on n € N. Assume that K;, i < n
have been constructed. Put

T,l_CmS(F 1/n)\ (FUU,, £),

an(z) = = dlst(x FUX\G)UU, ., E).
Let S,, C T, be a maximal set with the property that d(z,y) > 1/nforz £y
i S,. We set K,, = {S(z,an(z)) : z € S,.}. O

‘The more detailed proof of the above lemma can be found in [1] and the
same arguments we usc in the proof of Lemma 3.3 below. We nced this result
for the next consequence.
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Lemma 3.2, Let Hy be a nowhere dense subset of a metric space X and
H be a countable famaly of closed subsets of Hy linearly ordercd by melusion ¢
Then there exists an order isomorphism w from } onto o family of open subs(;g
of X\ Hy such that 1o N Cl(p(H)) = H for every H € H.

Proor. Without loss of gencrality we can assume that (. Ho € H. Let nbe )0
cardinality of ; i.c., ¢ither n is an integer or n = w, and let {/,, : n < n} be gy,
enumeration of # such that /1, = () (and Hp is the given nowhere dense aty)
We define p(H,,) by induction for 1 < n. Set o(Hy) = X\ Hy, (1)) = 0 ang
let us assume that n > 1 and the open sets @(H;) arc defined for i < n. There
are j,k < n such that H, C H, C Hy and for every 1 < n either H, CH,
or Hy CII,. Set F=H, and G = @(Hy) in Lemma 3.1 and let A be the
obtained system of open sets. Let 17 = UK. Then V' C p(H}) and Cl(V) =
U, E. U Hy, while U o Ei Cp(Il) C X \ Ho. Thercfore IIoNCI(V7) = 1,.
Finally, CI(V U¢(H,)) = C1(17) U Cl(p(41;)) and HonCl(¢(H))) = I, C
Hy,. Therefore we can set p(H,) =1"U »(I5). J

Lemma 3.3. Let X be a mcetric space and let € be a countable ordinal number.
Let {Fa}ngg be u sequence of closed nowhere dense scts such that Fe =0 and
F3 G F, for a < 8 < & There exists a system L =, L of disjoint

nonempty open sets, where L = | J7° L is a disjoint union such that
J 3 n=0~n K

(1) (VK e L) CUN)NFy = 0.
(2) (Vo € X\Fo)(3V' « neighbourhood of ) HK e L:VNCUK) #0} < 1.
(3) (Vr € Fo\ F.)(3V" a neighbourhood of 2)(VK € UBZO LYV NCUK) =

(4) (Vz € Fo)(V1" a neighbourhood of 7)(Ven)(3IK € £8) CUK) C 1.
(5)

Ve € Fo)(VK € L) ClI(K) C S(x.2dist(z, C1(K))).
PROOF. By Lemma 3.2 let us fix a descending sequence of open sets {17 }a<c
such that T, NFy = 0 and F, = FonCl(1,). Let (A p) : w —» € xw be
a bijection such that

=S
p —

—~ —~

n < m and A(n) = A(m) implies p(n) < p(m).
By induction we define the families E;:((::)) so that the following conditions hold:

(i) diam(K) < 1/(2n) for K € L7,
(ii) The set E, = |J{CUK) : K ¢ Ez((:)) } is closed and even every set
E,(A) = U{CI(K) : K € A} is closed for A4 C o,
(ili) E; C S(Fym),2/n)N Van)-
(iv) (Vz € Fan))(3K € L)) K C S(z,2/n).
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(v) (Vz € R)(YK € L)) CI(K) C S(=,2dist(z, CUK))).

Assume that the families E;‘((:)) , © < n have been constructed. Put

T, = S(F)‘(n),l/n) ﬁV)\(n) \ (FO U Ui(nEi)’
1 .
an(z) = i dist(z, Fo U (X \ V() U U Ei)-

Let S,, C T, be a maximal set with the property that d(z,y) > 1/nforz # y
in S,,. We set
L™ = (S(z,an(z)) : z € S}

p(n)

Now we verify conditions (i)-(v).

(i) For z € S, we have dist(z, Fy(n)) < 1/n because z € T}, and hence
a,(z) < 1/(4n). Therefore diam(S(z, c,(z))) < 1/(2n).

(ii) For any z # y in Sy, d(z,y) > 1/n and an (), ax(y) < 1/{4n). There-
fore dist(S(z, an(z)), S(y, an(v))) > d(z,y) — an(z) — an(y) > 1/(2n).

(iii) By definition of an,(z) we can see that Cl(S(z,an(x))) C Vi(n) for
z € S,. Moreover, since z € S(Fi(,),1/n),

Cl(S(z, an(z))) C S(Fxn), 1/n+ an(x)) € S(Fyny,2/n).

(iv) Let € Fy(n). Since F)(,, is nowhere dense and disjoint from Uicn Ei-
there is y € S(z,1/(2n)) \ (Fa(n) U U;<p, Ei)- Notice that

S,.NS(z,1/(2n) 4+ 1/n) #0

since otherwise y could be added to S, contradicting the maximality of Sp.
Now, for y € S, N S(x,1/(2n) + 1/n) we have

S(y,anly)) € S(z,1/(2n) + 1/n+ anly)) € S(z,2/n).

(v) Let x € Iy and K € £:((:)), K = S(y,an(y)). Then

an(y) < dist(y, Fo)/4 < d(y.z)/4.
Therefore dist(z, K) > d(y,z) — an(y) > 2a,(y) and
K C S(z,dist(x, K) + 2a,(y)) C S(z,2dist(z, K)).

Now we show that conditions (1) (5) are satisfied. Conditions (1), (4)
and (5) are conscquences of conditions (iii), (iv) and (v), respectively.

(2) Let £ € X \ Fy, dist(z, Fp) > 4/k for some k. If n > k, then by (iii)
I, C S(I'\y,2/n) € S(Fov,2/k). 1t follows that S(x,2/k) N U, > En =
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0. Now therc are two possibilities: Either, z € Cl(Ky) for some Kyerp
and then the set V' = S(z,2/k) \ U cr(En \ CI(Ky)) is open, z € V, ang
VNK # 0 if and only if K = K, for K € L. Or, ¢ & U,ci En, and the,
V= 5(,2/k)\ Up<\ En isopen, z € V, and VN K = 0 for every K € L.
B)Leta<B<Eandlet z € Fy \ F,. Then, by the choice of the set v
€ X\ Cl(Vy) C X\ Cl(Vp), and by (i), CI(K) C Vp for every K € 8. =

4 Main Result

Theorem 4.1. Let X be a separable metric space. Then every B function
[ X = R is the sum of three quasicontinuous functions with closed graphs.

Remark 4.2. As we already mentioned every BY function is piecewise contin-
uous. However in Theorem 4.1 BT can’t be replaced by piecewise continuous
because for X = Q every function is piecewise continuous while there exist-
s a function which is not cliquish and hence not every function is a sum of
quasicontinuous functions.

PROOF. Let f € B}. Let us introduce the following notation:

f* =max{f,0}, f~ =min{f,0},
and for a closed set A C X let hy : X \ 4 = R be defined by

ha(z) =1/ dist(z, A), if A#0, and ha(z) = 0, if A = 0.

By induction we define the following sequence of closed nowhere dense subsets
of X:

Fo = CI(D(f)),
Fay1 = CI(D(f[Fy)),

F, = ﬂ F;s for a a limit ordinal.
B<a

By Lemma 2.1(4) the set Fp is nowhere dense and Fyt1 is nowhere dense
in Fy. As X is separable every descending sequence of closed sets in X must
be countable. Let ¢ < w; be the least ordinal for which Fe=10.If £ =0, then
f is continuous and f = f + 0 + 0 is the sum of three continuous functions.
Therefore let us assume that ¢ > 0. By Lemma 3.3 there exists a system
£ =1, <¢ £% of disjoint nonempty open sets satisfying conditions (1)-(5).
For a < ¢ and K € £* let us fix bg € K and ag € Fo \ Fay1 such that 0 <
d(br,ax) < 2dist(bg, F, \ Fot1). This is possible because CI(K) N Fp = (.
By condition (2) of Lemma 3.3 the set D = Fy U U{CI(K) : K € L} is closed.



SuMS OF QUASICONTINUOUS FUNCTIONS WITH CLOSED GRAPHS 687

We define quasicontinuous functions fy, fo, f3 : X = R with closed graphs as
follows:

For z € Fo \ Fot1, a <&,

fi(@) = fH(z) + hray, (2),
fa(z) = hFa+1(x)a
fs(z) = f~(z) — 2hp,,, (2).

For z € CI(K), K € L§,,,n €N, a <,

fl(x) = f+(aK) + hch.+1 (aK)ﬂ
fa(z) = fH(z) + hr, (2),
f3(z) = f~(2) — hr.(z) — fT(ak) — hFays (ak).

For z € CI(K), K € £$,,1,n €N, a <&,

filz) = f*(z) + hr, (2),
f2(z) = hr,,\ (ak),
f3($) = f_(iL') - hFa (‘T) - hFa-H (aK)'

Forz € CI(K), K € L§,,5,n €N, a <,

fi(z) = fH(z) + hr,(2) — f(ak) + 2he,,, (ak),
f2(x) = f~(z) = hF, (),
f3('l") = f_(aK) - 2hFa+1 (G,[().

Forx € X \ D,

fi(z) = f*(z) + hp(z),
f2($) = hD(.’C),
f3(z) = f~(z) — 2hp(z).

Easily we can verify that f = f; + fo + fa. We prove that the functions f),
[2, f3 are quasicontinuous and have closed graphs.

The functions f and hp, are continuous on the open set X \ Fy and hence
the functions f*, f~, hp, are continuous at every point of x € X \ D and at
every point z € CI(K) for K € £, o < . Further, the function hp is contin-
nous on the open set X \ D. The functions fy, fo, f3 are constructed from
these functions in such a way that the restrictions f,[ C1(K) and f,[(X \ D) for
K € £ andi =1, 2, 3 are continuous. Since X \ Fy = (X \ D)U ¢, CI(K),
by Lemma 2.10 it follows that the functions fi, fu, fs, are quasicontinuous at
cvery x € X\ Fo.
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Let z € Iy, ie., z € F, \ Fuyq for some a < €. Let U be a neighbourhog
of z and let € > 0 be arbitrary. Since the functions f[F, (and also f1) [ K, .
J7IFy) and hg, ,, [ F, are continuous at z, there exists V C U, a neighborhog
of z, such that

de{|f+(I) _f+(y)|*|f—(x) - ( )' Ihlo+1( ) hF |1 |} <€/3 (4”

for each y € VN F,. Let 6§ > 0 be such that S(z,35) C V. By condition (1)
of Lemma 3.3 there exists n € N and K; € £§,, Ko € £S,,,, K3 € L300
such that CI(K;) C S(z,0) for i = 1, 2, 3. Then dist(bk,, Fa \ Fay1) < 8 and
hence d(bg,,ark;) < 26. It follows that ax, € V N F, because d(z,ax,) <
d(x,b;) + d{bk,,uk,) < § + 25 = 35. Now applying the second case in the
definition of f;, the third casc in the definition of fs, and the fourth case in
the definition of f3 we obtain

|fi(z) = )| < |fH(x ) — fHak)| + ke (&) = hpo,, (ak, )| for y € K,
|fa(7) — fay)] < I/?P + ) hE, 4 (ak,)| for y € Ko,

|f3(x) — f3(y)| <|f(z) — f(ar,)| + 2lhg,, (2) — hp,, (ak,)| for y € K3,
and since ag, € V' N Fy,, using the inequality (*) we get |fi(z) — fi(y)| < ¢
for all y € K; and i =1, 2, 3. Thercfore, the functions fi, fo, f3 are quasi-

continuous also at every x € Fy and we have proved that these functions are
quasicontinuous everywhere.

It remains to prove that graphs of functions fi, fa, f3 are closed subscts
of X' x R. It is enough to prove (see [2]) that for every z € X andi =1, 2, 3

C(fi,x) = ﬂ{Cl(f(U)) : U is a neighbourhood of 2} = {f;(z)}.
For z € X\ D, C(fi,z) = {fi(z)} because f;’s are continuous on X \ D.

For every z € D we find a sequence V,,, m € N of neighborhoods of & such
that

fi(y) € (—oo0,—m) U (fi(z) — 1/m, fi(z) + 1/m) U (m, o0). (4.2)

for eachm € N, y € V,,, and 4 = 1, 2, 3. This will end the proof since

() CUfi(Vin)) = {fi(z)} = C(fs,2), fori=1,2, 3.

m=0

Let z € D. There are two cases:
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Case 1. z € Cl(K) for some K € L% with @ < £ and n € N. By condition (2)
of Lemma 3.3 there exists a neighborhood V of z such that CI(L) NV = 0 for
every L € L\ {K}. As fi] CI(K) are continuous, we can find neighborhood-
s Wy, of  for m € N such that |fi(z) — fi(y)| < 1/m for y € W, N CL(K)
and i =1, 2, 3. Let r € N be such that dist(z, Fy) > 1/r. Then the sets
Vi =WV nS(z,1/(r+m)) for m € N are neighborhoods of z disjoint
from Fy and
Vin = (Vi 01 CI(K)) U (Vin \ D).

For y € 17, N CI(K) we have |f;(z) — fi(y)| < 1/m. For y € V;,, \ D we have
dist(y, D) < dist(y,z) < 1/(r+m) because x € D and hence hp(y) > m.
Since f¥(y) >0, f~(y) <0, by the fifth cases of the definitions of functions
fi, f2, f3 we get fi(y) > m, fo(y) > m, and f3(y) < —2m.

Case 2. I € Fy and hence xr € F, \ Fyyy for some a < £. The functions
fIFy and hf, ., are continuous at x; so we can find ncighborhoods 1, of x
such that

max{|f* (@) = ST @) @) = @) g, @) = hry )]} < 1/(3r?> .,
4.

for cach y € W, N F, and m € N. Let 0 < §,, < 1/(6m) be such that
S(z,64,,) € W,. By condition (3) of Lemnma 3.3 there cxists an open
neighborhood V' of z such that VNCI(K) =0 for K € [J35, £3. The sets
T =V NS(x,6m) \ Fat1 for m € N are neighborhoods of x and

"rn = (Vm-\D)U(anFa\Fa+1)U(‘;7mnFU\FQ)U(‘;71 N U U CI(I())

8<a KeL?
So for y € V,, we have four subcascs:

Case 2a. y €V, \ D. Then hyp(y) > m, because » € D and d(z,y) < 1/m,
and hence fi(y) > m, f2(y) > m, and fs(y) < —2m.

Case 2b. y €1, N (Fa \ Fat1).- Then by the choice of 117,

|f1(e) = L) 1) = )+ hey (@) = ey, (W) < 1/m,

‘fZ(J:) - fl(y)l = I]L[«'QH(I) - hchn(y)l < 1/’”?

|f3(z) = fs(@)| < |f7 () = F- @+ 2|hp,y, () = hr, (y)] <1/m.
Case 2¢. y€ V5, N(Fo\ Fo). There is B < a such that y € F3\ Fz41. As

r € Fy C Fgyy, we have dist(y, Fgy1) < d(e,y) < 1/m and b, (y) > mn.
Therefore fi(y) > m, f2(y) > m, and f3(y) < —2m.
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Case 2d. y € V,,NCI(K) for some K € L”:fn“-, j € {0,1,2}, n €N, anq
B < Asx € F, C F3, dist(y, F3) < d(y,r) < 6, < 1/m. Therefore
he,(y) > m and hence

Hy)>m.if j =1, 2, foly) > m, if j =0, fa(y) < —m, if j=0.1.
Ja(y) < —m,if j =2,
As dist(r, CI(K)) < d(z.y) < 6, and CI(K) C S(z,2dist(x,Cl(K))) C
S(r,20y,) by condition (5) of Lemma 3.3, we have
d(e,ag) < d(z,bg) +dbg,ax) < 28, + 48, = 66m.

Soif f =a, ax € W,, NF, and by (4.3),
if ) =0, then

Ifl(‘r) - fl(l/)l < |f+(T) - f,+((11\’)| + |hpo+1(.l‘) - hFu+1(af\')| < 1/”1)
if j = 1. then

le(‘T) - fQ(Z/)l = IhFa-—l(;r) - thx+l ((l[\')l < I/Tn‘

and if j = 2, then
|[f3(x) = fa(y)| < 1f7(2) = f~(ar)| + 2lhFay, (2) = heo g (ax)| < 1/mn.

If 3 <a,then.r € F, C Fzy1 and hence dist(ag, F341) < d(ak,r) < 66,, <
1/m. Then hp,_,(ax) > m and hence

fily) > m.if j =0. faly) > m.if j =1, fa(y) < —2m.if j = 2.

In all cases we have proved the property (4.2) and so the proof of Theo-
rem 4.1 is complete. O
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