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SUMS OF CLOSED GRAPH FUNCTIONS
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Dedicated to Professor T. Saldt on the occasion of his 70th birthday

ABSTRACT. The main purpose of this paper is to show that each Baire one star
function f: R — R can be expressed as the sum of two closed graph functions.

We say that a function f: R — R has a closed graph (written f € U) if the
graph of the function f, i.e., the set {(z,y) € Rx R: y = f(z)} is a closed
subset of the product R x R.

PROPOSITION A. (See [1].) Let f,g € U be nonnegative functions. Then
f+gel.

The following example shows that the assumption “nonnegative” in Propo-
sition A cannot be omitted.

EXAMPLE. (See [5].) Define f,g: R =+ R as follows

f(a:):{ . g(x)z{o if 2 =0,

L —L otherwise.
x x

Evidently f,ge U and f+g¢ U.

A function f: R — R is said to be a Baire-one-star function (written f € B} )
if for any nonempty closed F' C R there is a nonvoid G C F', relatively open in
F', such that the restriction of f to F' is continuous on G.

We say that a function f: R — R is piecewise continuous (sce (3]), if there
oo

exist closed subsets Fi, F,,... of R such that F, = R and each of the re-
i=1
strictions f|F; is continuous. It is known that a function f: R — R is piecewise

continuous iff it is a Baire-one-star function (see [4]).
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PROPOSITION B. (Sec [2].) Let a function f: R — R have a closed graph. If
K is a compact subset of R then f~1(K) is a closed subset of R.

It is not difficult to verify that each closed graph function f: R — R is
piccewise continuous (where we put F, = {z € R: | f(z)| < 3}).

THEOREM 1. For each f € B} there exist nonnegative f,, f, € U such that

f:fl_fz-

Proof. Let {F;}$2, be an increasing sequence of closed subsets of R such
e.e]

that |J F; =R and the restrictions of f to the sets F,,F,,... are continuous.
=1

Put ET) =F), B, =F, | — F, for each i € N. Define g: R = R as follows

1 . .
m lf.’EEEi, ZEN,

) =
9(z) {0 ifzeE,.

We show that g € U. Let z, € R, z,, = z,, g(z,) = y,- Let k € N be such
that z, € E, . Then there exists n, € N such that z,, € F} ,, for each n > n,.
Indeed, if z € {z,: n € N} be such that z ¢ F,,,, then z € E, for some
1 > k+ 1, which yields

1
dist(z, F) T |z — x|

g9(x)

Since z, — z; and g(z,) — y,, the set of all such = must be finite.

In the case k = 0 evidently g(z,) = 0= g(z,), thus g(z,) = g(z,). Suppose
that £ > 0. Then z; € F,; — F}.. Since F,, is closed, there exists n, € N such
that =z, ¢ F, for each n > n,. Thercfore z, € E, for each n > ny, +n,. Since
9|E} is continuous, we have g(z,) — g(z,).

Put f; = g+max(f,0), f, = f,—f. It is not difficult to verify that f,, f, € U
(in the same way as for the function g). .

Since By is closed with respect to addition, we have the following
COROLLARY. U +U = B;.

In the next part we will study discontinuity points of such functions. Notice
that f € B} iff for every nonempty closed FF C R the set D(f|F) (i.e., the set
of discontinuity points of the function f|F') is nowhere dense in F.

Let f € B} . Put E; = F, = R. For each ordinal number £ > 1 put

E.=(\F,,  F,=CID(f|E).

n<§
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Then there is the smallest (countable) ordinal number £(f) such that F, e =0.

On the other hand, for each countable ordinal number ¢ there exists a func-
tion f € U such that £(f) = £. Indeed, using a binary Cantor trec (see [6]) it is
not difficult to verify that there is a decreasing sequence {F,},<¢ of nonempty
closed subsets of the standard Cantor set such that the set Fj, is nowhere dense

in F, for each a < f < {. Put E;, = R, E = N F, for n > 1. Define
n<{
f: R — R as follows

diSt(];:C,Fn) lfze En_Fn (7755),
0 otherwise.

@ ={
THEOREM 2. For each f € B} there exist nonnegative f,, f, € U such that

f=f—-f, and D(f;)uD(f,) C CLD(f).

Proof. It is sufficient to define g: R — R as follows

dist(lm,F,,) ifz€ E, — F,(n<&(f)),
9(z) = ,
0 otherwise.
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