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1. sekcia

' NOVE TRENDY V STROJARSTVE NA PRAHU TRETIEHO TISICROGIA @
Matematika a jo] aplikdcie v tachnickych vedéich

On almost continuous functions
Jozef Dobos, Ladislav Spisiak

ABSTRACT. We study the well-known notions of Darboux property, almost con-
tinuity and closed graph function, all for functions with the domain R and the
range a subset of R. We prove for each closed graph function f that the function
h: h(z) = sin{f(z)) is almost continuous as a coroliary to a general theorem cha-
racterizing all continuous functions g for which, being substituted for sin, k remains
almost continuous.

1. INTRODUCTION

Throught all this paper, the notion "function” is used in the sense "function
with the domain R and the range a subset of R”. We identify the function with
its graph (as a subset of the plane).

This note is motivated before all by [2], Theorem 2 and Theorem 3. both
regarding quasicontinuity. Qur main goal here is to prove analogical results for
(Darboux property and) almost continuity presented in the following Theorem
and Corollary.

Theorem. Let g be any continuous function. Then the conditions (+) and (++)
are equivalent for g, where
(*) for each open set V such that g~'[V] # 0,
supg~{V] = oo and inf g7}{V] = —o0,
(+#) for each closed graph function f,
the function h : h{z) = g(f(z)) is almost continuous.

Corollary (for g =sin). Let f be any closed graph function. Then the function
h: h(z) = sin(f(z)) is almost continuous.

Again originally our result and the proof were given for the function
g: g(z) = sinz, but except of the continuity of g we need and use only the pro-
perty (*) of the function g. The key role in the proof of our Theorem play
- (1}, Theorem 2, allowing to deal with the Darboux property instead of the

almost continuity,
- (2], Theorem 1,

- (3], Theorem 9.

Before presenting them, let us recall some basic notions and facts (most of

them well-known; (E) we adopt from (1}).

Typeset by ApeS-TEX
28



Definition. Let f be any function.

- f is almost continuous, if for every open set G (a subset of the plane) containing
f there exists a continuous function g contained in G,

-- f has the Darboux property, if for every interval I, f[I] is an interval, too,

- f satisfies the condition (E), if for every a € R, [a, f(a)] is a2 point of the
boundary of f [ (—o0,a} and of the boundary of f | (a,00).

It is known (see e. g. [1]) that the implications

f is almost continuous = f has a connected graph =
= f has the Darboux property = f satisfies tne condition (E)

hold for each function f, but no converse implication is true in general. Another
basic fact (see e. g [4]) useful here is the following:

if g is any continuous and f any Baire class 1 function, then the function
h: h(z) = g(f{z)) is in the Baire class 1, too.

Finally let us present the promising key statements leading to our results.

{1}, Theorem 2. Let h be any Baire class 1 function. Then if h satisfies the
condition (E), then h is almost continuous.

[2], Theorem 1. Let f be any closed graph function, let a be a point of discon-
tinuity of f from the left (right). Then for each left (right) neighborhood U of a
there exists an interval J C U such that f is continuous and unbounded on J.

[3], Theorem 9. Let f be any closed graph function. Then f is in the Baire
class 1.

2. PROO¥F OF THE THEOREM
a) Proof of (¥) = (xx). Clearly it suffices to prove the

Lemma. Let g be any continuous function satisfying (x), let f be any closed
graph function. Then the function h: h{z) = g(f(z)) has the Darboux property.

The proof of the Lemma uses the following

Proposition. Let g be any function with the Darboux property satisfying (*),
let f be any function which is continuous and unbounded on the interval J. Then
int(rog g) € g[f[J]}-

Proof of the Proposition. Take arbitrary y € int(rngg) and € > 0 such that
(y — &,y + €) C rmgg. Let us consider the case f unbounded above on J, the
opposite case is analogical. Since f is continuous and unbounded above on J,
there exists a € R such that (a,00) C f[J], hence g[(a,0)] C g[f[J]]. Now it
suffices to show that y € g[(a,00)], i. e. that (3 z > a)(g(z) = y): since

gy -] #0# g v,y +e)l,

29



we have
supg ™~ {(y — €,y)] = 00 = supg*[{y,y + ¢)}.

Therefore there exist z;,z2 > a such that g{z;) < y & g(z;) > y. The Dar-
boux property of g gives the required z > a, which completes the proof of the
Proposition. '

Proof of the Lemma. Let I be an interval; we show that h[I] is an interval, too.
We distinguish two cases.

Case (i). f [ I is discontinuous at some point of I. By [2], Theorem 1, there is an
interval J € I such that f is continuous and unbounded on J. By the Proposition
we have

int(rng g) € g(f[J]} € g{f[1]] C rngyg,

i. e. int(rngg) C k(I] C mgg. Since g is continuous, rng ¢ is an interval, therefore
so is h[I}.

Case (ii). f [ I is continuous. Since g is continuous, h | I is a composition of two
continuous functions, hence h[I] is again an interval, which completes the proof
of the Lernma.

b) Proof of =(*}) => —(*x). Let V be an open set such that g~ '[V] # 0,
s = supg~![V] < oo and choose arbitrary fixed b € g7'{V]. (The case
infg~}{V] > —oo is analogical.) Take the closed graph function f as follows:
put f(0) = b and for z # O put f(z) = s+ ]'}ET We have g(f(0)) = g(b) € V
(V open!), but for z # 0 f(z) > s, thus g(f(z)) ¢ V. Therefore h clearly fails (E)
at a = 0, because {0, 2(0)] € RxV (R xV open!), and for z # 0 [z, k(z)] ¢ Rx V,
which completes the proof of the Theorem.

3. PROOF OF THE BROWN’S THEOREM

As we have mentioned in the Introduction, it is the Theorem 2 in [1] which has
a key importance for our result. We use this opportunity to present here our proof
of the Brown’s Theorem 2. Although we follow the main idea of Brown’s proof,
we tried to simplify it (and to avoid partial slight inexactness or inconsequentness
of some steps of the original proof).

We use only the following well-known (see e. g. [4], [5]) properties of Baire
class 1 functions:

(P1) if h is any Baire class 1 function and P C R is any nonempty perfect set,
then there exists ¢ € P such that h { P is continuous at ¢,

(P2) if h is any Baire class 1 function, then the set of all points of continuity of h
is dense in R.

(Actually, for functions h : R — R, (P1) bolds as the equivalent characterization
of Baire class 1 functions. The conclusion of (P1) is also used as the definition
of the notion of barely continuous function (see e. g. {5]). It follows from [5),
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Theorem 3.1, that the conclusion of (P2) holds for all barely continuous functions
in metric spaces, in general.)

Proof of [1], Theorem 2. We use the symbols Cl for the closure in the plane,
U, for an open square in G with the centre [z, h(z)] and II. for the projection to
the z-axis. '

Let h be any Baire class 1 function which is not almost continuous. We prove
that A doesn’t satisfy (E). Let G be an open set containing h, but containing no
continuous function. Put

Gi={XeRxR; (IgCG)
(g is a continuous function with domg,rngg C R & 0 € domg & X € ¢)},
G, =G —-Cl(Gy), A= {z €R; [z,h(z)] € G}, B={z €R;{z,h(z)] € G2},
K =R — (int{A4) Uint(B)).

Let M be the set of all isolated points of K and put P = K — M. (It can be
easily shown that G; is open, but we don't use this fact in our proof.) We use
the Propositions 1, 2, 3 and the Observation in the rest of our proof.

Proposition 1. Let (a,b) and (¢, d) be intervals.
(i) Let for b,c > 0 (a,b) C A and (¢,d) C B hold. Then
(b ¢ A= h doesn’t satisfy (E)) and (¢ ¢ B = h doesn’t satisfy (E) ).
(1) Let for a,d <0 (a,b) € A and (¢,d) C B hold. Then
(a ¢ A= h doesn’t satisfy (E)) and (d ¢ B = h doesn’t satisfy (E} ).

Proof. We show (i); (ii) is analogical. Let b ¢ A, i.e. [b,h(b)] ¢ G1 and consider
Uy. If there exists {z,h(z)] € Uy with z € (a,b), then [b, h(b)] must belong to
G, too ([z,h(z)] can be easily connected with [b, h(b)] by a continuous function
inside Uy C G) - a contradiction. Therefore A fails (E) at 5. Similarly, let ¢ ¢ B,
ie. [c,h(c)] & Ga, ie. [c,h(c)] € CI(G:) and consider U. smali enough (not
"overflowing” the right bound d). U, contains a point {w,y] € G, with w < d.
If we had [z, h(z)] € Uy, for some z € {w,d), then [z, h(z)] had to belong to G;,
too ([w,y] can be easily connected with [z, h(z)] by a continuous function inside
Uw € G) - a contradiction. Therefore h fails (E) at w.

Proposition 2. int{A) U int(B) is dense in R.

Proof. Take any open interval J. h has a point of continuity ¢ € J, ¢ > 0 (the case
¢ < 0 is analogical ). Consider the square U, such that II;(U.) = (c—¢,c+€) C J
and for all z € I.(U.), [z, h(z)] € U.. If [¢c, h(c)} € Gy, then (c,c+€) C JNint(A4),
if [¢, h{c)] ¢ Gy, then (¢ — €,c) C J Nint(B).

Observation. If any left endpoint ¢ > 0 (right endpoint d < 0) of some com-
ponent of B is an isolated point of K (i.e. an element of M ), then h doesn’t
satisfy (E). If any right endpoint b > 0 ( left endpoint a < 0 ) of some component
of A is an isolated point of K (i.e. an element of M ), then h doesn’t satisfy (E).

Proof. Follows immediately from the Proposition 1.
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Proposition 3. If P has an. isolated point, then h doesn’t satisfy (E).

Proof. Take an isolated point ¢ € P and a sequence {ca}nenN = ¢, cq € M.

Case (i). For each c,, > 0 there exist components A, of A, B, of B such that
sup Bp = cp = inf A,,. Put d, = inf B, or d, = sup A, such that |c—dg| < |e—cql.
(Similarly for ¢, < 0 we have A,, B, such that inf A, = ¢, = sup B, and put
dy = sup B, or d, = inf A,.) Clearly d, — c. Since c is an isolated point of P,
there must exist d, € K —~ P = M. Then such d, satisfies one of the assumptions
of the Observation.

Case (ii). Since all cn’s are isolated points of K, there must exist ¢,, > 0 which
is a left endpoint of a component of B and a right endpoint of a component of A
(the case ¢, < 0 is analogical ). Again the rest is the Observation.

Finally we show that the only remaining case:

P perfect,
P contains all left endpoints ¢ > 0, all right endpoints d < 0 of components of B
and all right endpoints b > 0, all left endpoints ¢ < 0 of components of 4

is impossible. Since P is perfect nonempty and h is a Baire class 1 function, h [ P
is continuous at some ¢ € P, ¢ > 0 (the case ¢ < 0 is analogical). Consider
the square U, such that for all z € P NI (U.), [z, h(z)] € U.. Since c is not
an isolated point of P, we have infinitely many components of A and of B in
. (U.), and for all left endpoints z of these components of B and right endpoints
z of these components of A we obtain 2 € PN II.(U.). Therefore for all such
z, [z,h(z)] € Uc € G, which leads to a contradiction completing the proof of
Brown's Theorem.
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