A SURVEY OF METRIC PRESERVING FUNCTIONS

Jozef Doboš

Introduction

Let us begin by recalling that a function $f: X \longrightarrow \mathbb{R}^+$ is said to be subadditive if it satisfies the inequality $f(x+y) \leq f(x) + f(y)$ whenever $x, y \in X$, where X is an additive monoid and $\mathbb{R}^+ = [0, +\infty)$. (See [27] and [34].) It turns out that subadditivity admits a nice characterization in terms of infimal convolution. If $f, g: X \longrightarrow \mathbb{R}^+$, then their infimal convolute $f_{\square}g$ is the function defined on X that sends each $x \in X$ to the real number

$$(f_{\square}g)(x) = \inf\{f(y) + g(z); y, z \in X \text{ and } y + z = x\}.$$

(See [21] and [30].) In the following theorem, $f \wedge g$ denotes the meet of the functions $f, g: X \longrightarrow \mathbb{R}^+$, $(f \wedge g)(x) = \min\{f(x), g(x)\}$ for each $x \in X$.

Theorem 1. (See [30].) Let $f, g: X \longrightarrow \mathbb{R}^+$ with f(0) = 0 = g(0). Then the following statements hold:

- (a) f is subadditive iff $f_{\square}f = f$,
- (b) if $f \wedge g$ is subadditive, then $f_{\square}g = f \wedge g$, and
- (c) if f and g are both subadditive, then $f_{\square}g$ is the largest subadditive minorant of $f \wedge g$.

For recent results on subadditive functions, see [19] and [20]. Let us mention only one of the results proved there:

Every subadditive and right-continuous bijection of \mathbb{R}^+ is a homeomorphism.

METRIC PRESERVING FUNCTIONS

Let (M,d) be a metric space. For each $f: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ define the function $d_f: M \times M \longrightarrow \mathbb{R}^+$ as follows

$$d_f(x, y) = f(d(x, y))$$
 for each $x, y \in M$.

We call a function $f: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ metric preserving iff for each metric space (M,d) the function d_f is a metric on M. For example, we can derive a bounded metric from a given metric by the function $x \mapsto \frac{x}{1+x}$.

Denote by \mathcal{O} the set of all functions $f: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ with f(0) = 0. The following result is simple and well known. (See [35], and [17], p. 131.)

Proposition 1. If $f \in \mathcal{O}$ is a nondecreasing, subadditive function vanishing exactly at the origin, then it is metric preserving.

Simple examples of such functions are concave functions. (See [2], [28], and [29].) Let us recall that a function $f: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ is called concave whenever the inequality

$$f\left(\frac{x+y}{2}\right) \ge \frac{f(x)+f(y)}{2}$$

holds for all $x, y \in \mathbb{R}^+$. It is not difficult to verify that each concave function $f \in \mathcal{O}$ is nondecreasing and continuous on $(0, +\infty)$. (See [14].) It is easy to see that for each $f \in \mathcal{O}$ the following statements hold:

- (i) if f is concave, then $x \mapsto \frac{f(x)}{x}$ is nonincreasing on $(0, +\infty)$, and (ii) if $x \mapsto \frac{f(x)}{x}$ is nonincreasing on $(0, +\infty)$, then f is subadditive.

Therefore each concave function $f \in \mathcal{O}$ is metric preserving.

Let us recall that a modulus of continuity is a function $f \in \mathcal{O}$ such that f is nondecreasing, subadditive, and continuous from the right at the origin (compare to Proposition 1). In [10] it is shown that the standard Cantor function ϕ ("the devil's staircase") is a modulus of continuity. It is not difficult to verify that $x \mapsto \frac{\phi(x)}{x}$ is not nonincreasing on $(0, +\infty)$.

Let a,b and c be positive real numbers. We call the triplet (a,b,c) a triangle triplet iff $a \le b+c$, $b \le a+c$, and $c \le a+b$. (See [31].) The following theorem gives a characterization of metric preserving functions, which is based on the fact that each three-points space has a representation by certain subspace of the Euclidean plane. (See [2], [8], [29], and [31].)

Theorem 2. Let $f \in \mathcal{O}$. Then f is metric preserving iff f vanishes exactly at the origin, and it has the following property:

if (a, b, c) is a triangle triplet, then so is (f(a), f(b), f(c)).

Corollary. Every metric preserving function is subadditive.

It is well known that there is a complete metric space with the following property

(A) There is a monotone sequence of closed balls the intersection of where is empty.

In the paper [16] such metric space has been constructed by a modification of the Euclidean metric on the real line.

Example 1. Define $f: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ as follows

$$f(x) = \begin{cases} x & x \leq 2, \\ 1 + \frac{1}{x-1} & x > 2. \end{cases}$$

In [16] it is shown that f is metric preserving and the metric space (\mathbb{R}, e_f) has the property (A), where e is the Euclidean metric on IR (i.e. e(x, y) = |x - y| for each $x, y \in \mathbb{R}$). The proof of (A) is based on the following property of the metric space (\mathbf{IR}, e_f) :

(B) For each compact set K there is a closed ball S and there is a compact set L such that $K \subset \mathbb{R} - S \subset L$.

In [12] it is shown that there is a metric preserving function f such that the metric space (\mathbf{IR}, e_f) has the property (A), but not the property (B).

A characterization of metric preserving functions f such that the metric space (\mathbb{R}, e_f) has the property (A) is an open question.

The following result shows an importance of continuity in our investigations.

Theorem 3. (See [2].) Let (M,d) be a metric space. Let f be a metric preserving function. If f is continuous, then the metrics d and d_f are uniformly equivalent. If (M,d) is not discrete (is not uniformly discrete), then the metrics d and d_f are equivalent (uniformly equivalent) iff f is continuous.

The following theorem gives a characterization of the continuous metric preserving functions.

Theorem 4. (See [2].) Let f be metric preserving function. Then the following three conditions are equivalent:

- (1) f is continuous,
- (2) f is continuous on the right at the origin,
- (3) $\forall \varepsilon > 0 \exists x > 0 : f(x) < \varepsilon$.

Differentiable properties of metric preserving functions are studied in [5], [11], and [31]. The following theorem is the main result of the paper [5] (compare to [35] for monotone functions).

Theorem 5. Let f be a metric preserving function. Then $f'_{+}(0)$ exists (finite or infinite), and

$$f'_{+}(0) = \inf\{k > 0 : f(x) \le k.x \text{ for each } x \in \mathbb{R}^{+}\}.$$

If $f'_{+}(0) < +\infty$, then f is a Lipschitz mapping with the Lipschitz constant $f'_{+}(0)$ (which yields that f is differentiable almost everywhere).

In contrast with this property it is shown in [11], that there is a continuous, metric preserving function which is nowhere differentiable. This function is a slight modification of the Van der Waerden's continuous nowhere differentiable function.

Metric preserving functions f such that f-id is periodic, where id is the identity function on \mathbb{R}^+ (i.e. id(x) = x for each $x \in \mathbb{R}^+$), are studied in [25]. Some other properties of metric preserving functions are contained in [6], [7], [13], [24], and [33].

METRIC PRESERVING FUNCTIONS OF SEVERAL VARIABLES

Let (M_1, d_1) and (M_2, d_2) be two metric spaces. It is well known that $\max(d_1, d_2)$, $\sqrt{d_1^2 + d_2^2}$, and $d_1 + d_2$ are metrics on $M_1 \times M_2$. In these cases we obtain new metrics as composite functions of the real functions $(x, y) \mapsto \max(x, y)$, $(x, y) \mapsto \sqrt{x^2 + y^2}$, and $(x, y) \mapsto x + y$, respectively, with the "vector-metric" $d: (M_1 \times M_2)^2 \longrightarrow (\mathbb{R}^+)^2$, where $d((p, q), (r, s)) = (d_1(p, r), d_2(q, s))$.

We shall generalize this idea.

Let T be a nonempty set of indices. Consider the indexed family $\{(M_t, d_t)\}_{t \in T}$ of metric spaces. Define $d: (\prod_{t \in T} M_t)^2 \longrightarrow (\mathbb{R}^+)^T$ as follows

$$d((x_t)_{t\in T}, (y_t)_{t\in T}) = (d_t(x_t, y_t))_{t\in T}.$$

We say that the function $f: (\mathbb{R}^+)^T \longrightarrow \mathbb{R}^+$ is a metric preserving function if for each indexed family $\{(M_t, d_t)\}_{t \in T}$ of metric spaces the composite function f(d) is a metric on the set $\prod_{t \in T} M_t$.

Let us recall that a function $f: (\mathbb{R}^+)^T \longrightarrow \mathbb{R}^+$ is called isotone iff $f((x_t)_{t \in T}) \leq f((y_t)_{t \in T})$ whenever $0 \leq x_t \leq y_t$ for each $t \in T$.

The following sufficient condition is a generalization of Proposition 1.

Proposition 2. (See [22].) If $f: (\mathbb{R}^+)^T \longrightarrow \mathbb{R}^+$ is an isotone, subadditive function vanishing exactly at the constant zero function, then it is metric preserving.

The following theorem gives a characterization of metric preserving functions. (See [3].)

Theorem 6. Let $f: (\mathbb{R}^+)^T \longrightarrow \mathbb{R}^+$. Then f is metric preserving iff it is a function vanishing exactly at the constant zero function and it has the following property:

```
if (a_t, b_t, c_t) are triangle triplets for each t \in T, then (f((a_t)_{t \in T}), f((b_t)_{t \in T}), f((c_t)_{t \in T})) is a triangle triplet.
```

Consider the indexed family $\{(M_t, d_t)\}_{t \in T}$ of metric spaces. Denote by \mathcal{T} the product topology on $\prod_{t \in T} M_t$. Let $f: (\mathbb{R}^+)^T \longrightarrow \mathbb{R}^+$ be a metric preserving function. Denote by \mathcal{T}_f the topology on $\prod_{t \in T} M_t$ generated by the metric f(d). A natural question arises whether we can investigate metrizability of the product topology by the metric f(d).

```
Theorem 7. (See [3].) \mathcal{T} = \mathcal{T}_f iff
\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall (n_t)_{t \in T} \in \mathbb{IN}^T \; \exists (a_t)_{t \in T} \in (\mathbb{IR}^+)^T :
\forall t \in T - (I \cup F) : a_t \geq n_t,
\forall t \in I - F : a_t \geq \operatorname{diam} M_t,
\forall t \in F \cap H : a_t \geq \delta,
f((a_t)_{t \in T}) < \varepsilon,
```

where $I = \{t \in T; \text{ the metric space } (M_t, d_t) \text{ is bounded } \}$, and $H = \{t \in T; \text{ the metric space } (M_t, d_t) \text{ is not discrete } \}$.

Denote by \mathcal{U} the product uniformity on $\prod_{t\in T} M_t$. Denote by \mathcal{U}_f the uniformity on $\prod_{t\in T} M_t$ generated by the metric f(d). By a similar way one can derived a characterization of metric preserving functions f with $\mathcal{U} = \mathcal{U}_f$. (See [4].) If f is continuous, then $\mathcal{U} = \mathcal{U}_f$ (which yields $\mathcal{T} = \mathcal{T}_f$). Some other properties of metric preserving functions of several variables are contained in [32].

In the rest of this paper we will suppose that the set of indices is finite. Let $f: (\mathbb{R}^+)^n \longrightarrow \mathbb{R}^+$. Define the functions $f_i: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ (i = 1, ..., n) as

follows

$$f_1(x) = f(x, 0, ..., 0),$$

 $f_2(x) = f(0, x, 0, ..., 0),$
 \vdots
 $f_n(x) = f(0, ..., 0, x)$

Proposition 3. (See [9].) Let $f: (\mathbb{R}^+)^n \longrightarrow \mathbb{R}^+$ be metric preserving. Then f is continuous iff all f_i (i = 1, ..., n) are continuous.

The following result is obtained by [15] and [18].

Theorem 8. Let ||.|| be a norm in \mathbb{R}^n . Then the restriction of ||.|| to $(\mathbb{R}^+)^n$ is metric preserving iff it is isotone.

Some applications of such functions concerning intrinsic metrics are contained in [15] and [23]. Isotone metric preserving functions $f: (\mathbb{R}^+)^n \longrightarrow \mathbb{R}^+$ such that $f_i = id$ for each $i \in \{1, ..., n\}$ are studied in [1], pp. 196-198, and [26].

Let $(M_1, d_1), \ldots, (M_n, d_n)$ be metric spaces. Let us recall that $H = \{i; (M_i, d_i) \text{ is not discrete }\}.$

Theorem 9. (See [9].) Let $f, g : (\mathbb{R}^+)^n \longrightarrow \mathbb{R}^+$ be metric preserving. Then $\mathcal{T}_f \subset \mathcal{T}_g$ iff for each $i \in H$ the following statement holds: if g_i is continuous, then f_i is continuous.

Put $\mathcal{L} = \{ \mathcal{T}_f; f : (\mathbb{R}^+)^n \longrightarrow \mathbb{R}^+ \text{ is a metric preserving function } \}.$

Theorem 10. (See [9].) The lattice \mathcal{L} is dually isomorphic to the lattice $(\exp H, \subset)$.

A characterization of the lattice of topologies \mathcal{T}_f on an infinite products of metric spaces is an open question.

REFERENCES

- [1] Aumann, G., Reelle Funktionen, Springer-Verlag, Berlin-Göttingen-Heidelberg, (1954).
- [2] Borsik, J. and Doboš, J., Functions whose composition with every metric is a metric, Math. Slovaca 31 (1981), 3-12. (in Russian)
- [3] Borsík, J. and Doboš, J., On a product of metric spaces, Math. Slovaca 31 (1981), 193-205.
- [4] Borsik, J. and Dobos, J., On metrization of the uniformity of a product of metric spaces, Math. Slovaca 32 (1982), 97-102.
- [5] Borsík, J. and Doboš, J., On metric preserving functions, Real Analysis Exchange 13 (1987-88), 285-293.
- [6] Burdyuk, V.J., On metric preserving functions, VINITI No. 6335-V90, Univ. of Dnepropetrovsk (1990). (in Russian)
- [7] Burdyuk, V.J., Distances, Univ. of Dnepropetrovsk (1993). (in Ukrainian)
- [8] Das, P.P., Metricity preserving transforms, Pattern Recognition Letters 10 (1989), 73-76.
- [9] Doboš, J., On a certain lattice of topologies on a product of metric spaces, Math. Slovaca 32 (1982), 397-402.
- [10] Dobos, J, The standard Cantor function is subadditive, submitted.
- [11] Dobos, J. and Piotrowski, Z., Some remarks on metric preserving functions, Real Analysis Exchange 19 (1993-94), 317-320.

JOZEF DOBOŠ

- [12] Dobos, J. and Piotrowski, Z., A note on metric preserving functions, Internat. J. Math. & Math. Sci., accepted.
- [13] Dobos, J. and Piotrowski, Z., When distance means money, submitted.
- [14] Ger, R. and Kuczma, M., On the boundedness and continuity of convex functions and additive functions, Aeq. Math. 4 (1970), 157-162.
- [15] Herburt, I. and Moszyńska, M., On metric products, Colloq. Math. 62 (1991), 121-133.
- [16] Jůza,M., A note on complete metric spaces, Matematicko-fyzikálny časopis SAV 6 (1956), 143-148. (in Czech)
- [17] Kelley, J.L., General Topology, Van Nostrand, New York (1955).
- [18] Lassak, M., On Helly's dimension of products of metric spaces, Mat. issled., Kishinev X, 2 (36), (1975), 159-167.
- [19] Matkowski, J., Subadditive functions and relaxation of the homogenity condition of seminorms, Proc. Amer. Math. Soc. 117(4) (1993), 991-1001.
- [20] Matkowski, j. and Świątkowski, T., On subadditive functions, Proc. Amer. Math. Soc. 119(1) (1993), 187-197.
- [21] Moreau, J.-J., Inf-convolution, sous-additivité, convexité des fonctions numérique, J. Math. Pures et Appl. 49 (1970), 109-154.
- [22] Neubrunn, T. and Šalát, T., Über eine Klasse metrischer Räume, Acta F.R.N. Univ. Comen. X, 3, Math. XII. (1965), 23-30.
- [23] Oledzki, J. and Spież, S., Remarks on intrinsic isometries, Fund. Math CXIX (1983), 241-247.
- [24] Piotrowski, Z., On integer-valued metrics, School of Mathematics, Physics and Chemistry, Wrocław University, Poland (1974). (in Polish)
- [25] Pokorný, I., Some remarks on metric preserving functions, Tatra Mountains Math. Publ. 2 (1993), 65-68.
- [26] Pokorný, I., Some remarks on metric preserving functions of several variables, Tatra Mountains Math. Publ., to appear.
- [27] Rosenbaum, R.A., Subadditive functions, Duke Math. J. 17 (1950), 227-247.
- [28] Shirai, T., On the relations between the set and its distances, Mem. Coll. Sci. Kyoto Imp. Univ. Ser. A 22 (1939), 369-375.
- [29] Sreenivasan, T.K., Some properties of distance functions, J. Indian Math. Soc. (N.S.) 11 (1947), 38-43.
- [30] Strömberg, T., An introduction to the operation of infimal convolution, Research report, Dept. of Math., Lulea University, submitted (1994).
- [31] Terpe, F., Metric preserving functions, Proc. Conf. Topology and Measure IV, Greifswald (1984), 189-197.
- [32] Terpe, F., Metric preserving functions of several variables, Proc. Conf. Topology and Measure V, Greifswald (1988), 169-174.
- [33] Terpe, F., Some properties of metric preserving functions, Proc. Conf. Topology, Measure and Fractals, Math. Res. 66, Akademie-Verlag, Berlin (1992), 214-217.
- [34] Toranzos, F., Sobre la inecuación funcional $f(x) + f(y) \ge f(x+y)$, Rev. mat. hisp.-amer. 8 (1933), 109-113.
- [35] Wilson, W. A., On certain types of continuous transformations of metric spaces, Amer. J. Math. 57 (1935), 62-68.

DEPARTMENT OF MATHEMATICS, TECHNICAL UNIVERSITY, 042 00 KOŠICE, SLOVAKIA E-mail address: dobos@ccsun.tuke.sk

Received October 3, 1994 Revised February 17, 1995