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FUNCTIONS WITH A CLOSED GRAPH
AND BILATERAL QUASICONTINUITY
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Dedicated to the memory of Tibor Neubrunn

ABSTRACT. In the paper the relationship between bilateral quasicontinuity and
closedness of graph of functions is investigated. Moreover, a characterization of
the set of points of discontinuity of quasicontinuous functions with closed graphs
is given.

Therc are many papers which deal with the closed graph functions. (See for
example [1], [2], and [4-6].) In the paper [2] the quasicontinuily of the composite
functions of the form g¢(f), where f: R — R is an arbitrary closed graph
function and ¢g: R — R is a suitable continuous function is studied. The purpose
of this note is to extend some results of [1] and [2].

We say that a function f from a space X into a space Y has a closed graph
if the graph of the function f, i.e., {(:L‘,y) € X xY:y = f(z)} is a closed
subset of the product X x Y. We denote by C;(Dy) the set of all points at
which the function f is continuous (discontinuous).

The following result can be established by using a method similar to the one
used in establishing [2; Theorem 1]. The symbols L=(f,a), L*(f,a) denote the

cluster scts from the left and right, respectively, of the function f: R - R at
the point a.

PROPOSITION 1. Let f: R — R have a closed graph. Let a € R be such that
L=(f,a)Nn{—o0,+o0} £ 0 (L' (f,a)N{ -00,+0ov} # B). Then for cach = > 0
there is an interval J C (u —e,a)NCy (J C (a,a +¢) (- Cy) such that f is
unbounded on J .
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PROPOSITION 2. Let f: R — R have a closed graph. Let a € R be such that
L=(f, a) N {—o0,+00} =0 (L*(f, a) N {—o00,+00} = @. Then there is § > 0
such that f is bounded on (a — 6, a) (on (a, a + 6)).

Proof. Supposethat a € Dy. (The opposite case is evident.) First we show
that there is 6 > 0 such that (a —26, a) C Cy. Suppose to the contrary that for
each n € N we have DyN(a—n"1, a) # 0. Let n € N. Then by [2; Theorem 1]
there is an interval J, C (e —n™!, @) N C; such that f is unbounded on J,.
Choose z,, € J, such that | f(z,)| > n. Then L~(f, a) N {—o0,+oo} # 0,
which contradicts the assumption.

Now suppose to the contrary that f is unbounded on (a — 6, a). Let n € N
be such that n™! < §. Since f is bounded on [a — 6, a —n™!], there is z, €
(a —n~!, a) such that | f(z,)| > n. Then L=(f, a) N {—c0 + oo} # 0 which
contradicts the assumption.

(The second part of the proof is similar.) O

A function f: R — R is said to be left (right) hand sided quasicontinuous at
a point a € R if for every € > 0 and for every neighbourhood V' of f(a) there
exists a nonempty openset W C (a—e¢, a)Nf Y (V) (W C (a, a+e)nf~1(V)).
[ is quasicontinuous (bilaterally quasicontinuous) at a if it is both left or (and)
right sided quasicontinuous at this point. (See [3].)

According to the previous Propositions we obtain the following result, which
is an improvement of [2; Theorem 3]. (The proof is similar to the one used in
establishing [2; Theorem 3].)

THEOREM 1. Let g: R — R be continuous. Then the following statements
are equivalent:

(1) for each closed graph function f: R — R the composite function g(f)
is bilaterally quasicontinuous,

(ii) for each open set V in R such that g~}(V) # 0, supg (V) = 400
and inf g7 1(V) = —00.

THEOREM 2. Let f: R — R be a bilaterally quasicontinuous function with
a closed graph. Then f is continuous.

P roof. By contradiction. Suppose that there is a € R such that Lt (f,a)N
{00,400} # 0. (The case L~(f,a)N{—00,+0c0} # O is similar.) Let € > 0 be
arbitrary. Put A = f—l([f(a) —¢, fla) + e]) . Since f has a closed graph, the
set A is closed in R. Then there is a countable family J of pairwise disjoint
open intervals such that (R — A) N (a,+o00) =UJ . Since f is right hand sided
quasicontinuous at the point a, and L*(f,a) N {—oo,+o0} # 0, there is a

sequence {J,} %9 such that J, € J, and a, — a, where a, = inf J,. Let
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n € N. Since f is right sided quasicontinuous at the point a,, we obtain
|f(an) — f(a)| = €. Thus L*(f,a)N {f(a) —¢, f(a) +¢e} # 0, which contradicts
the assumption. 0

THEOREM 3. Let F' C R. Then F is closed and nowhere dense if and only

if there is a quasicontinuous function f: R — R with a closed graph such that
Df=F.

Proof. =:Since R— F? is open (where F¢ is the set of all accumulation
points of F'), there is a countable family J of pairwise disjoint open intervals
such that R — F¢ = UJ. Let J;,J» be subfamilies of J such that the sets
UJ1, UJ, are disjoint and dense in F¢. Put E =R —UJ; . Define g: R —» R
as follows

1
g(m) = diSt(.’E, E),
0, otherwise.

ifz ¢ E,

Let a € F be an isolated point of F'. Then there is §, > 0 such that (a,a+2-
ba)NF =0.Put I, =(a,a+6,). Define h: R — R as follows

ba
h(z)=¢ z—a
0, otherwise.

—1, ifz €I, (wherea € F — F9),

Put f = g+h.Itis not difficult to verify that f is bilaterally quasicontinuous,
f has a closed graph, and Dy = F.

<: By [1; Theorem 3. O
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