

FUNCTIONS WITH A CLOSED GRAPH AND BILATERAL QUASICONTINUITY

Jozef Doboš

Dedicated to the memory of Tibor Neubrunn

ABSTRACT. In the paper the relationship between bilateral quasicontinuity and closedness of graph of functions is investigated. Moreover, a characterization of the set of points of discontinuity of quasicontinuous functions with closed graphs is given.

There are many papers which deal with the closed graph functions. (See for example [1], [2], and [4–6].) In the paper [2] the quasicontinuity of the composite functions of the form g(f), where $f: \mathbb{R} \to \mathbb{R}$ is an arbitrary closed graph function and $g: \mathbb{R} \to \mathbb{R}$ is a suitable continuous function is studied. The purpose of this note is to extend some results of [1] and [2].

We say that a function f from a space X into a space Y has a closed graph if the graph of the function f, i.e., $\{(x,y) \in X \times Y; y = f(x)\}$ is a closed subset of the product $X \times Y$. We denote by $C_f(D_f)$ the set of all points at which the function f is continuous (discontinuous).

The following result can be established by using a method similar to the one used in establishing [2; Theorem 1]. The symbols $L^-(f,a)$, $L^+(f,a)$ denote the cluster sets from the left and right, respectively, of the function $f: \mathbb{R} \to \mathbb{R}$ at the point a.

PROPOSITION 1. Let $f: \mathbb{R} \to \mathbb{R}$ have a closed graph. Let $a \in \mathbb{R}$ be such that $L^{-}(f,a) \cap \{-\infty,+\infty\} \neq \emptyset$ ($L^{+}(f,a) \cap \{-\infty,+\infty\} \neq \emptyset$). Then for each $\varepsilon > 0$ there is an interval $J \subset (a-\varepsilon,a) \cap C_f$ ($J \subset (a,a+\varepsilon) \cap C_f$) such that f is unbounded on J.

AMS Subject Classification (1991): 54C35, 54C10. Key words: bilateral quasicontinuity, closed graph functions. **PROPOSITION 2.** Let $f: \mathbb{R} \to \mathbb{R}$ have a closed graph. Let $a \in \mathbb{R}$ be such that $L^{-}(f, a) \cap \{-\infty, +\infty\} = \emptyset$ $(L^{+}(f, a) \cap \{-\infty, +\infty\} = \emptyset$. Then there is $\delta > 0$ such that f is bounded on $(a - \delta, a)$ (on $(a, a + \delta)$).

Proof. Suppose that $a \in D_f$. (The opposite case is evident.) First we show that there is $\delta > 0$ such that $(a-2\delta, a) \subset C_f$. Suppose to the contrary that for each $n \in \mathbb{N}$ we have $D_f \cap (a-n^{-1}, a) \neq \emptyset$. Let $n \in \mathbb{N}$. Then by [2; Theorem 1] there is an interval $J_n \subset (a-n^{-1}, a) \cap C_f$ such that f is unbounded on J_n . Choose $x_n \in J_n$ such that $|f(x_n)| > n$. Then $L^-(f, a) \cap \{-\infty, +\infty\} \neq \emptyset$, which contradicts the assumption.

Now suppose to the contrary that f is unbounded on $(a - \delta, a)$. Let $n \in \mathbb{N}$ be such that $n^{-1} < \delta$. Since f is bounded on $[a - \delta, a - n^{-1}]$, there is $x_n \in (a - n^{-1}, a)$ such that $|f(x_n)| > n$. Then $L^-(f, a) \cap \{-\infty + \infty\} \neq \emptyset$ which contradicts the assumption.

(The second part of the proof is similar.)

A function $f: \mathbb{R} \to \mathbb{R}$ is said to be left (right) hand sided quasicontinuous at a point $a \in \mathbb{R}$ if for every $\varepsilon > 0$ and for every neighbourhood V of f(a) there exists a nonempty open set $W \subset (a-\varepsilon, a) \cap f^{-1}(V)$ ($W \subset (a, a+\varepsilon) \cap f^{-1}(V)$). f is quasicontinuous (bilaterally quasicontinuous) at a if it is both left or (and) right sided quasicontinuous at this point. (See [3].)

According to the previous Propositions we obtain the following result, which is an improvement of [2; Theorem 3]. (The proof is similar to the one used in establishing [2; Theorem 3].)

THEOREM 1. Let $g: \mathbb{R} \to \mathbb{R}$ be continuous. Then the following statements are equivalent:

- (i) for each closed graph function $f: \mathbb{R} \to \mathbb{R}$ the composite function g(f) is bilaterally quasicontinuous,
- (ii) for each open set V in \mathbb{R} such that $g^{-1}(V) \neq \emptyset$, $\sup g^{-1}(V) = +\infty$ and $\inf g^{-1}(V) = -\infty$.

THEOREM 2. Let $f: \mathbb{R} \to \mathbb{R}$ be a bilaterally quasicontinuous function with a closed graph. Then f is continuous.

Proof. By contradiction. Suppose that there is $a \in \mathbb{R}$ such that $L^+(f,a) \cap \{-\infty, +\infty\} \neq \emptyset$. (The case $L^-(f,a) \cap \{-\infty, +\infty\} \neq \emptyset$ is similar.) Let $\varepsilon > 0$ be arbitrary. Put $A = f^{-1}([f(a) - \varepsilon, f(a) + \varepsilon])$. Since f has a closed graph, the set A is closed in \mathbb{R} . Then there is a countable family \mathcal{J} of pairwise disjoint open intervals such that $(\mathbb{R} - A) \cap (a, +\infty) = \cup \mathcal{J}$. Since f is right hand sided quasicontinuous at the point a, and $L^+(f,a) \cap \{-\infty, +\infty\} \neq \emptyset$, there is a sequence $\{J_n\}_{n=1}^{+\infty}$ such that $J_n \in \mathcal{J}$, and $a_n \to a$, where $a_n = \inf J_n$. Let

 $n \in \mathbb{N}$. Since f is right sided quasicontinuous at the point a_n , we obtain $|f(a_n) - f(a)| = \varepsilon$. Thus $L^+(f, a) \cap \{f(a) - \varepsilon, f(a) + \varepsilon\} \neq \emptyset$, which contradicts the assumption.

THEOREM 3. Let $F \subset \mathbb{R}$. Then F is closed and nowhere dense if and only if there is a quasicontinuous function $f: \mathbb{R} \to \mathbb{R}$ with a closed graph such that $D_f = F$.

Proof. \Rightarrow : Since $\mathbb{R}-F^d$ is open (where F^d is the set of all accumulation points of F), there is a countable family \mathcal{J} of pairwise disjoint open intervals such that $\mathbb{R}-F^d=\cup\mathcal{J}$. Let $\mathcal{J}_1,\mathcal{J}_2$ be subfamilies of \mathcal{J} such that the sets $\cup\mathcal{J}_1,\cup\mathcal{J}_2$ are disjoint and dense in F^d . Put $E=\mathbb{R}-\cup\mathcal{J}_1$. Define $g\colon\mathbb{R}\to\mathbb{R}$ as follows

$$g(x) = \begin{cases} \frac{1}{\operatorname{dist}(x, E)}, & \text{if } x \notin E, \\ 0, & \text{otherwise.} \end{cases}$$

Let $a \in F$ be an isolated point of F. Then there is $\delta_a > 0$ such that $(a, a+2 \cdot \delta_a) \cap F = \emptyset$. Put $I_a = (a, a+\delta_a)$. Define $h: \mathbb{R} \to \mathbb{R}$ as follows

$$h(x) = \begin{cases} \frac{\delta_a}{x-a} - 1, & \text{if } x \in I_a \text{ (where } a \in F - F^d), \\ 0, & \text{otherwise.} \end{cases}$$

Put f = g + h. It is not difficult to verify that f is bilaterally quasicontinuous, f has a closed graph, and $D_f = F$.

$$\Leftarrow$$
: By [1; Theorem 3].

REFERENCES

- [1] BAGGS, I.: Functions with a closed graph, Proc. Amer. Math. Soc. 43 (1974), 439-442.
- [2] DOBOŠ, J.: On discontinuity points for closed graph functions, Real Anal. Exchange 15 (1989-90), 337-339.
- [3] GRANDE, J.—NATKANIEC, R.: On quasi-continuous bijections, Acta Math. Univ. Comenian. LX 1 (1991), 31-34.
- [4] KOSTYRKO, P.—ŠALÁT, T.: On functions whose graphs are closed sets (in Russian),
 Čas. pěst. mat. 89 (1964), 426-432.
- [5] KOSTYRKO, P.—NEUBRUNN, T.—ŠALÁT, T.: On functions whose graphs are closed sets II (in Russian), Acta F.R.N. Univ. Comenian. X, 3, Math. 12 (1965), 51-61.

JOZEF DOBOŠ

[6] NEUBRUNN, T.: c-continuity and closed graphs, Čas. pest. mat. 10 (1965), 172-178.

Received October 19, 1992

Department of Mathematics
Faculty of Mechanical Engineering
Technical University
Letná 9
040 01 Košice
SLOVAKIA