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A Note on Real Cliquish Functions

In [9] it is proved that every cliquish function f : R™ — R is the sum of six
quasicontinuous functions. By [5] every cliquish function f : R — R is the sum
of four quasicontinuous functions. In this paper we show that every cliquish
function f : R™ — R is the sum of two simply continuous functions each of
which is the sum of two quasicontinuous functions.

In what follows X denote a topological space. For a subset A of a topological
space denote C£A and Int A the closure and the interior of A, respectively.
The letters N,Q and R stand for the set of natural, rational and real numbers,
respectively.

We recall that a function f : X — R is cliquish at a point z € X (see [6])
if for each € > 0 and each neighborhood U of z there is a nonempty open set
G C U such that |f(y) — f(2)| < € for each y,z € G. A function f: X — R is
said to be cliquish if it is cliquish at each point r € X.

A function f : X — R is simply continuous (see [1]) if for cach open set V
in IR, the set f~!(V) is the union of an open set and a nowhere dense set in X.

A function f : X — R is quasicontinuous at a point z € X (sce [6]) if for
each neighborhood U of z and each neighborhood V of f(z) there is a nonempty
open set G C U such that f(G) C V. Denote by Q; the set of all points at
which f 1s quasicontinuous. If Q; = X, then f is said to be quasicontinuous.

It 1s easy to sec that every quasicontinuous function is simply continuous
and cliquish. In [7] it is shown that if X is a Baire space, then every simply
continuous function f : X — R is cliquish. Example 1 in [3] shows that the
assumption “X 1s a Baire space” cannot be omitted.

If f: X — Ris cliquish, then X \ C; (where C; is the set of all continuity
points of f) is of the first category in X (see [6]). If X is a Bairc space, then
f X — Ris cliquish if and only if C; is dense in X (sece [4]).

We recall that a 7-base for X is a family A of open subsets of X such that
every nonempty open subset of X contains some nonempty A € A (see [8]).
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Lemma 1 Lct X be a topological space such that the family of all open connected
sels is a w-base for X. Let h : X — R be a cliquish function such that h=1(0)
is dense in X. Let g: X — R be a continuous function which 1s constant on no
nonemply open subsel of X. Then f = g+ h is simply conlinuous.

Proof. Let v, v € R and € > 0 be such that u 4+ < v —¢e. Put

Auve={r €97 (vt e,v—¢): f(z) ¢ (v, v)}.

Then Ayve = {z € Aupe : h(z) 2 0} U{z € Auve : h(z) <0} C {z €
g7 (=00, v =€) : g(x) + |h(2)] 2 v} U{z € g7 ((v + €,00)) : g(z) = [h(z)] <
u} C {r € X :|h(z)| > €}. Henee Ay e is nowhere dense in X

Let 1" C R be an open set. We shall show that

g~ (V) c Ceint f~1(V). (1)

Let & € ¢71(V). Let u,v € R and € > 0 be such that g(z) € (u+¢e,v—¢) C
(u,v) C V. Let U be a neighborhood of z such that ¢(U) C (u+¢,v—¢). Since
Auwve 1s nowhere dense in X, there is a nonempty open set G C U/ such that
GNAuve=0. Since G C f~1((u,v)) C f~1(V), wehave G C Int f~1(V). Thus
z € ClInt f~1(V).

Put IV = f~1(V)\ Int f=1(V). We shall show that IV is nowhere dense in
X. Let J C X be a nonempty open connected set. Put If = Jng=1 (V). We
distinguish two cases.

a) Suppose that H # 0. By (1) we obtain IV N g=!(V) Cc ClInt f~}(V) —
Int f=1(V). Hence there is a nonempty open set £ C H such that

O=EnWng ' (V)=EnW.

b) Suppose that If = 0. Let wv,v € Rand € > 0 be such that u+e< v —¢
and (u,v) C g(J). Then there is a nonempty open set T° C J such that
g(T) C (u+ €,v—c¢). Since Ay, is nowhere dense in X, there is a
nonempty open set F' C T such that F N Ay, = 0. We shall show that
FNIW =0. Let z € F. Then © € g~'((u + €,v — €)), which yields
f(x) € (u,v) C g(J). Therefore there is 2 € J such that f(z) = g(2).
Since I = (), we obtain f(z) ¢ V. Therefore z ¢ 1V.

The following example shows that the assumption of the continuity of g in
Lemma 1 cannot be replaced by the assumption of the quasicontinuity of g.

Example 1 Let Q = {q1,¢2,¢3,...}. Define g,h : R — R as follows
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g(z) = Z 27" foreach z € R

Nngn<T
2=l for 2 = qp,
h(z) = |
0, otherwise.

Then g is a quasicontinuous function which is constant on no nonempty open
subset of R, h is a cliquish function such that A=1(0) is dense in R. However
f = g+ h 1s not simply continuous.

Remark 1 The sequence of functions f, : R — R, fu(z) = %sin z+h(z), where

h is the function from Example 1, shows that the class of all simply continuous
functions is not closed with respect to uniform convergence.

Perhaps the following Lemma is known but we are not able to give any
references.

Lemma 2 Let X be a second countable T3-space without isolated points. Then
there is a continuous function g : X — R which is constant on no nonemplty
open subset of X.

Proof. Let B = {B,, By, B3, ...} be a countable base for X. For each n € N
choose yn,2, € Bp such that y, # 2z,. Let ¢ : X — [0,1] be a continu-
ous function such that ¢;(y;) = 0 and g¢,(2;) = 1. Suppose g¢i,...,gx have
been constructed. Let hgyy : X' — [0,1] be a continuous function such that
hiy1(yk+1) = 0 and hpy1(zk41) = 1. Put

k k
hit1s if ) A7 gi(e1) < D47 gi(2r41),
i=1 i=1

1 — hyxy1, otherwise.

Jk4+1 =

(o0] —_1 » . . . .
Put f =377 47*g;. Then f is a continuous function which is constant on no
nonempty open subset of X.

Theorem 1 Let X be a Baire second countable Ts-space such thal the family of
all open connected sets is a w-base for X. Then every cliquish function [ : X —
E s the sum of two simply continuous functions.

Proof. Denote by D the set of all isolated points of X. Put B = X\ C¢D Then
by Lemma 2 there is a continuous function h : B — IR which is constant on no
nonempty open subset of .X. Denote by A the set of all points in X at which
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f is not locally bounded. Since (‘s is dense in X and A is closed, A is nowhere
dense in X. Define G : B — R as follows:

(r) = hm SUDy Lz ueC, (f(w) = h(u)) fzeB\A
A= f(z) — h(z) otherwise.

Evidently
9(z) = f(z) — h(z) for each z € C; N B. (2)

Let z € B\ A. Let U C B be a neighborhood of z and € > 0. Then there is
u € Cy NU such that |f(u) — h(u) — g(z)] < . Furthcrmore there is an open
neighborhood G' C U of u such that |g(u) — 9(y)| < & for each y € G. Therefore
for cach y € G we have [g(z) — g(y)| < lg(z) — f(u) + h(u)| + |f(u) — h(u) —
g(w)| + |g(u) — g(y)| < €. This shows that

B\ ACQ,. (3)
Define & : 3 — R as follows
k(r) = f(z) — h(z) — g(z) for each z € B.

Since g is cliquish on B, the function k is cliquish on B. From (2) we obtain
that £=1(0) is dense in B. According to Lemma 1 we have that k + h is simply
continuous. Define f;, f2 : X — R as follows

z), if z€DB,
f](x):{ 9()

f(z), otherwise;

k(z) + h(z), if z € B,
f2(z) = .
0, otherwise.

Evidently f; + fo = f. We shall show that f1 and f5 are siinply continuous.

Since I C Qy,, by (3) we have X \ Q;, C AU (C€D\ D). Thus X \ Qy,
is nowhere dense in X. Let V be an open set in R. According to Remark 1
and Lemma 1 in [2] the set Q, N (f71(V)\ Int f{'(V)) is nowhere dense in X.
Therefore f7'(V) \ Int f71(V) C (T \Int fTHVN N Qp) U (X Q) 1s
nowhere dense in X. Thus f; is simply continuous.

Finally f7'(V) = (f*(V)n B)U (f3' (V)N CED) is the union of two sets
each of which is the union of an open set and a nowhere dense set in N. Thus
f2 1s simply continuous.

The following example shows that the assumptions in Theorem 1 cannot be
omitted.
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Example 2 Let X = R with the cofinite topology. Evidently X is Baire and
locally connected. Define g : X — R as follows

%, if z €N,
g(z) = .

0, otherwise.

Since for each simply continuous function f : X — R the set f(X) is finite, the
cliquish function g is not a sum of finitely many simply continuous functions.

Lemma 3 Let X be a Baire separable locally connected metric space. Let f:
X — R be such that the set X \ Qy is nowhere dense in X. Then f is the sum
of two quasicontinuous functions.

Proof. Let B be a countable base for X. Put A= {B € B: C{B C IntQy;).
Then A = {A;, Az, As,...}. Let W = {wl,wg,wg,. .} be a countable dense

subset in X \ IntQy. Let i € N. Since X \U 1 CLA; is an open neighborhood
of the point w;, there is a sequence (v ); of pomts such that v; € (IntQ;NCy)\

Uk , CLAL and (v )j converges to w;. Put E = {vi:i,je€ N} It is not difficult
to verify that F is dxscrcte Define functions fl,f') : X — R as follows

1 . 1 . 3} :
fi(z) = { dist(z,C?E) *! (m) , il z€e X\ CYE,
0, if z € CLE;
f2(T) = f(l') —fl(.L)

We shall show that f; is quasicontinuous. Similarly we can show that f; is
quasicontinuous.

Evidently f, is quasicontinuous on X \ C4E.

Let z € CLE. We may assume thatl z is not an isolated point of X. Let U
be an open connected neighborhood of » and € > 0. Choose y € U N E. Then
y is not an isolated point of X. Since y € Cy, there is an open neighborhood V
of y such that

[f(t) — f(y)] < E for each t € V.

Let W CUNYV bea nelnglb01hood of y such that W N FE = {y}. Since fi
assunies any real value on W, we obtain

€Wz #y: fi(2) = () — f(a).

Since f} is continuous at z, there is an open neighborhood G C W of z such that

1f1(¢) = [1(2)] < % for cach t e G.
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Let t € G. Then we have
[J2(2) = f2()] = | f(2) = S() + f1(1)] <
1/ (2) = J(9) + [i() + 11 () = SO + 11 (E) — fi(2)] < e

Thus f> 1s quasicontinuous at z. Evidently f = f; + fo.

Proposition 1 (See [9; Theorem 3).) Let f : R™ — R be a cliquish function such
that the set f~1(0) is dense in R™. Then f is the sum of two quasicontinuous
functions.

Theorem 2 Every cliquish function f : R™ — R is the sum of two stinply
continuous funclions each of which is the sum of two quasicontinuous functions.

Proof. Let h : R™ — R be a continuous function which is constant on no
nonempty open set. From the proof of Theorem 1 it follows that there are
simply continuous functions fj, fo : R™ — IR such that f = J1+ f2,R™\ Qy,
is nowhere dense in R™, f, — h is cliquish and (f; — h)~1(0) is dense in R™,
By Lemma 3 there are quasicontinuous functions g;, g2 : R™ — R such that
fi = g1 + g2. According to Proposition 1 there are quasicontinuous functions
93,95 : R™ — R such that f, —h = g3+ g5s. Put g4 = gs + h. Then g4 is
quasicontinuous and f; = g3 + ¢,.
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