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ON SIMPLE CONTINUITY POINTS

Throughout this paper we assume that X and Y are topological spaces. The
letters N, Q and R stand for the set of natural, rational and real numbers, respec-
tively.

N. Biswas in [1] introduced the following concept of simple continuity.

Definition 1. A function f : X — Y is said to be simply continuous if for
every open set V inY the set f~*(V') is a union of an open set in X and a nowhere
dense set in X.

The purpose of the present paper is to introduce a suitable pointwise definition
of that notion and to give a characterization of the set of all simple continuity
points.

Definition 2. We say that f: X — Y is simply continuous at a pomntz € X
if for each open neighborhood V of f(z) and for each neighborhood U of z the set

f7H(V)\int f~1(V) is not dense in U. Denote by Ny the set of all points at which
f is simply continuous.

REMARK 1. Let f : X — Y. It is easy to verify that

(a) f is simply continuous in the sense of Biswas if and only if Ny = X,

(8) Qs C Ny, where Q denotes the set of all points at which f is quasicontinuous

(see [8]).

Lemma 1. Let f : X — Y. Then for each open set V inY the set Ny N
(f~Y (V) \int f~Y(V)) is nowhere dense in X.

PROOF. Let V be an open set in Y. Put W ='f~1(V)\int f-}(V). It is easy to
see that W N int cl W C X — N;. Hence the set NN W C (NynW)\intcl W C
W\ int c]l W is nowhere dense in X.
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Proposition 1. Let f: X — Y, where Y is second countable. Then the set

Ny \ Cy (where C; is the set of all continuity points of f) is of the first category
in X.

PROOF. Let {B, : n € N} be a countable base of open sets in Y. Since
X\Cr = UL, (f7Y(Ba) = int f7}(B,)), by Lemma 1 the set N, \ C; =
Unzr (N O (f71(Bn) \ int f71(B,))) is of the first category in X.

The following example shows that the set N; \ C; may be dense in the domain

of f.

EXAMPLE 1. Let f : R —» R, f(z) = r(z)+z, where r : R — R is the Riemann
function defined by

1, for z = B (where p, q are relatively prime, g > 0),
r(x) - q . (]
0 otherwise.
Then Ny \ C; = Q is dense in R.
Definition 3. (See [8]). Let f : X — Y, where Y is a metric space with a
metric d. We say that f is c¢liquish at a point z € X if for each ¢ > 0 and each
neighborhood U of z there is a nonempty open set G C U such that d(f(z), f(y)) <

€ for each y,z € G. Denote by A, the set of all points at which f is cliquish. If
Ay = X, then f is said to be cliquish.

REMARK 2. Let f : X — Y, where Y is a metric space. Then the set
Ay \ Ny C A;\ Cy is of the first category (see [10]). If Y is separable, then
according to Proposition 1 the set Ny \ Ay is of the first category.

The following example shows that the set N, \ A s may be uncountable.

EXAMPLE 2. Let C be the Cantor discontinuum. Let ¥y : R — R be the

Dirichlet functions (i.e. x(z) =1 for z € Q and x(z) = 0 otherwise). Define
f : R — R on the contiguous intervals (a, b) of C as follows

1+ x(z), forz € (a,a+ i(b—a)),
f(z) =19 2x(=), forz € (a+ 3(b—a),a + 2(b—a)),
x(z), forz € (a + %(b—a),b),
and f(z) = 0 otherwise.

Then Ny\ Ay = C\ {0,1} is uncountable.
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Theorem 1. Let f: X — Y, where Y is a metric space with a metric d. Let
at least one of the following conditions be satisfied:

(i) X is a Baire space and Y is a separable metric space,
(ii) Y is a totally bounded metric space.
Then the set N; \ Ay is nowhere dense in X.

PROOF. Put G = int cl(N;\ A;). We shall show that G = ¢. Suppose, by way
of contradiction, that G # ¢. Put K = G\ A;. Since the set A, is closed (see[7])
the set K is open. We shall show that K # ¢. Since the set int A, U (X' \ Ay) is
dense in X and G N int Ay = int{cl(Ny \ A7) N A;) C int(A; \int A;) = ¢, we
get # #GN(int AyU(X\Af))=(GN int A;))UK = K.

Let o € K be arbitrary. Since zo & Ay, there is € > 0 and L C K, an open
neighborhood of zg, such that

(*)  for every nonempty open set M C L there are y,z € M such that
d(f(y), f(z)) = 8e.

We shall show that there is v € ¥ such that f~1(S(v,¢€)) is not nowhere dense in
L (where S(a,n) = {t € Y : d(a,t) < n}). We distinguish two cases.

a) Suppose that X is a Baire space and Y is separable. ThenY = U2, S(vn,¢€),
where {v, : n € N} is countable dense set in Y. Since L = L N
FTHUR) S(vm,€)) = U2y (LN f71(S(vny€))), there is & € N such that
L f~1(S(vk,€)) is not nowhere dense in L.

b) Suppose that Y is totally bounded. Then there is a finite set {vi,v2,...,Um}
in Y such that Y = Ur, S(vn,€). Since L = LN f~Y (U™, S(vn,€)) =

Unzi (LN f71(S(vn,€))), there is k € N such that L N f71(S(vk,€)) is not

nowhere dense in L.

Therefore there is a2 nonempty open set J C L such that f~1(S(v,¢)) is dense
in J. Put

D ={yeJ:d(f(y),v) 2 4¢}.

Then in view of (*) the set D is dense in J. In the following we distinguish two
cases.

@) Suppose that there is z € J N Ny such that d(v, f(z)) > . Put B =
{u € Y : d(u,v) > €}. Then B is an open neighborhood of f(z). Since
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f(D) C B, the set f~!(B) is dense in J. Since f~1(S(v,¢)) is dense in J
and f~1(S(v,€)) N f~(B) = ¢, we have int f~1(B)NJ = ¢. Therefore
S~1(B) — int f~}(B) is dense in J, which contradicts = € N;.

B) Suppose that d(v, f(z)) < € for each = € J N N;. Since Ny is dense in J,
there is z € JN N;. Then J is an open neighborhood of z and S(v,2¢) is
an open neighborhood of f(z). Put V = {u € Y : d(u,v) > 2¢}. Since
f(D) C V, the set f~1(V) is dense in J. Since f~1(S(v,2¢)) is dense in J
and f='(S(v,2¢)) N f~Y(V) = ¢, we have int f~1(S(v,2¢))NJ = ¢. Thus
f71(S(v,2¢)) \ int f~1(S(v,2¢)) is dense in J, which contradicts z € Ny.

REMARK 3. Under the assumptions of Theorem 1 every simply continuous
function f : X — Y is cliquish (see [9]). Example 1 in [3] shows that those
assumptions cannot be omitted.

Proposition 2. Under the assumptions of Theorem 1 the set cI Ny — N ¢ is of
the first category in X.

PROOF. According to Theorem 1, Remark 2 and the fact that A 7 18 closed (see
[7]), the set cl N\ Ny C cl((Ny \ Ay) UAs)\ Ny C (N, Af)U(As\ Ny) is of
the first category in X.

The following example shows that the assumption “Y is a metric space” in
Proposition 2 cannot be omitted.

EXAMPLE3. Let Y =R, T = {ACR:R\ Ais finiteor 0 ¢ A}. Then Y is
Ty-space. Define f : R = Y as follows

f(z) = { 0, forz € Q,

z, otherwise.

Then the set cl Ny \ Ny is of the second category in R.
We recall that a subset A of X is almost closed (see [6]) if cl int A C A.
Proposition 3. Let f: X — Y. Then the set N; is almost closed.

PROOF. Let z € clint Ny. Let U be an open neighborhood of z and V an
open neighborhood of f(z). We shall show that f~}(V) — int f~!(V) is not dense
in U, which yields z € N,;. We distinguish two cases.

a) Suppose that there is y € NN U N f~1(V). Since y € Ny, the set 1 (V)\
int f=!(V) is not dense in U.
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b) Suppose that f~}(V)NU N Ny = ¢. Since z € clint Ny, the set G =
UN int N, is nonempty open, G C U and f~Y(V)NG C f~Y(V)NUNN; = ¢.
Therefore f~}(V) \ int f~!(V) is not dense in U.

We recall that a topological space X is perfectly normal (see [4], p. 68) if it is
normal and each closed subset of X is Gs. A topological space is resolvable (see
[2]) if it is a union of two disjoint dense sets.

Theorem 2. Let X be a perfectly normal space such that X?¢ is a resolvable
space (where Z¢ is the set of all accumulation points of Z). Let Y be a first
countable Ty-space such that Y? # ¢. Suppose A C X is such that

(1) A contains all isolated points of X,
(2) A is almost closed,
(3) cl A\ A is of the first category in X.
Then there is a function f : X — Y such that Ny = A

PROOF. Let yo € Y9 Let {yn : n € N} be a one-to-one sequence which
converges to yo,yn # Yo for all n € N. Since X9 is resolvable, we can write
X \cl A= BUD, where B and D are disjoint dense sets in X \ cI A. Since
X is perfectly normal, there is a decreasing sequence {H,, : n € N} of open sets
such that ¢l A = N2, Hp and ¢l Hpyy C H, for each n € N. Put Gy = ¢ and
Gn=X\clH, foreachn €N. Let cl A\ A = UL, An, where A, are mutually
disjoint and nowhere dense in X. Define a function f : X — Y as follows

f(z) = Yo, forz€ AUD,
" | yny, forz € A U((Gn\ Gn-1)NB).

We shall show that N; = A. We distinguish four cases.

I) Suppose that zg € A. Then f(zo) = yo. Let U be an open neighborhood of z¢
and V an open neighborhood of f(zo). Then there is k € N such that y,, € V
for eachn > k. Put G = H,NU. Then G is an open neighborhood of z¢ and
G C U. Since GNG,, = ¢ for eachn < k, we have G\U"=1 A, C Gn f~Y(V).
Since A, are nowhere dense sets, we have int(G — U5_, A,) # ¢. Hence
¢ # int(GN f~1(V)) = GN int f~}(V). Therefore f~1(V)\ int f~}(V) is
not dense in U. Thus z¢ € Ny.

II) Suppose that z, € (Gx \ Gk-1) N B for some k € N. Put U = X — cl A
and V =Y \ {yo}. Then U is an open neighborhood of z¢ and V is an open
neighborhood of f(zo) = yx. We have f~1(V)NU = B. Since B is dense in
U and int B = ¢, theset f~'(V)— int f~(V) is dense in U. Thus zo & N,.
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IIT) Suppose that o € D. Since 20 € X \ cl A, there is k € N such that
zo € Gk \ Gk-1. Put U =Gy and V =Y \ {y1,¥2,..-,¥x}. Then U is an
open neighborhood of ¢ and V is an open neighborhood of f(xo) = yo. Since
D c f~Y(V), the set f~}(V) is dense in U. Since U N B is dense in U and
UNBNf~1(V) = ¢, wehaveUN int f~}(V) = ¢. Hence f~1(V)\int f~}(V)
is dense in U. Thus zo & Ny.

IV) Suppose that zo € Ay for some ¥ € N. Put U = X \ clint A and
V =Y\ {yo}. Since theset A is almost closed, we havezo € A, C X\ A C U.
Therefore U is an open neighborhood of zo and V is an open neighbor-
hood of f(zo) = yi. Since f~}(V) = BU(cl A\ A), int f~}(V) = ¢ and
cd fFHV)=(X\clA)U(lA- int A) =cl(X\ A). SoU =X \clintAC
c(X\ A)= cl(f~1(V) \int f~}(V)). Thus zo & Ny.

Theorem 3. Let X be a perfectly normal space such that X9 is a resolvable
space. Let Y be a metric space such that Y # ¢. Let us assume that (i) or (ii) is
satisfied. Let A C X. Then there is a function f : X — Y such that N, = A if
and only if the set A has the properties (1), (2) and (3).

REMARK 4. Theorems 1 and 3 are true if instead of (i) or (ii) we require
(iii) X is a k-Baire space (see [5]) and Y is a metric space with weight (see [4, p.
27]) less than k.

REMARK 5. It was shown in [7] that a set A is Q; for some f if and only if int
cl A\ A is first category, which is stronger than condition (3). Whereas the sets
Ay are generally closed, and the sets C; are generally G; sets, the sets Q; and N
don’t even have to be Lebesque measurable. However, they must have the Baire

property.

Theorem 4. Let f : X — Y, where X is a Baire space and Y is a separable
metric space. Then the following three statements are equivalent:

(u) X \ Ny is a set of the first category in X,
(v) Ny is a dense set in X,
(w) f is cliquish.

PROOF. (u) = (v): Obvious.

557



(V) = (W).‘ We have X \ Af C (X\Nf) U (Nf \ Af) = (CI N/ \ Nf) U (Nf \A/)
Therefore according to Theorem 1 and Proposition 2 X \ Ay is an open set of the
first category and hence X \ Ay = ¢.
(w) = (u): Follow’s from Remark 2.

The Riemann function shows that the assumption (v) in Theorem 4 cannot be
replaced by the assumption “N; = X”.
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