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ON DECOMPOSBITIONS OF QUASICONTINUITY

There are many papers which deal with decompositions of
continuity ( see for example [2], (51, (&1, [10] ). The purpose
of this note is to investigate similar questions for the
quasicontinuity. A characterization of the cliquishness on

Baire spaces is given.

In what follows X, Y denote topological spaces. For
a subset A of a topological space denote Cl A and Int A
the closure and the interior of A, respectively. The letters

N, @ and R stand for the set of natural, rational and real

numbers, respectively.

We recall that a function fi1X ? Y is almost continuous

( also nearly continuous ) at a point x « X ( see [7] ) if

1

for each neighbourhood V of f(x), the set Cl £ (V) is

a neighbourhood of x. Denote by H_F the set of all such

Points at which f is almost continuous. If Hf = X, then

f is said to be almost continuous.
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A function f:1X ?* Y is quasicontinuous at a point X € X
( see (9] ) if for each neighbourhood U of x and each
neighbourhocod V of f(x) there is a nonempty open set B C U
such that £(G) C V. Denote by Qf the set of all points

at which f 1is quasicontinuous. If Qf = X, then f is said

to be quasicontinuous.

A function f1X * Y 1is simply continuous ( see [1] )
if for each open set V in Y, the set f_1(V) is a union
of an open set and a nowhere dense set in X.

It is easy to see that every quasicontinuous function

is simply continuous.

Let Y be a metric space with a metric d. A function
fi1X * Y is cliquish at a point x € X ( see [9] ) if for
@ach € > 0 and each neighbourhood U of x there is
a nonampty open set G C U such that d(f(y), f(z)) < £ for
each vy, z € G. Denote by Af the set of all points at which
f is cliquish. If Af = X, then f is said to be cliquish.

The set Af i closed in X ( see [8] ). Hence, if
Y 1is a metric space and f:X * Y is a function such that

Qf is dense in X, then ¥ is cliquish.

Now we shall give a simultaneous generalization of the

almost continuity and of the quasicontinuity.

Definition 1. We say that fi1X » Y is almost quasi-
continuous at a point x € X, if for each neighbourhood V of
£(x) and each neighbourhood U of x, the set € (W N U

is not nowhere dense. Denote by Bf the set of all points
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at which ¥ 1is almost quasicontinuous. If Bf s X, wa say

that ¢ is almost quasicontinuous.
Remark 1. It is sasy to see that Hf U Qf c Bf.

Ramark 2. Evidently, a function € is almost quasiconti-

nuous at x if and only if for each neighbourhood U of x

and each neighbourhood V of f(x) there is a nonempty open

set G CU such that G € CI £ Y.

Lemma 1. Let Y be a regular space. Then

B<F N Int Cl Qf c Qf.

Proof. Let x € Bf N Int Cl1 Qf. Let U and V be open

neighbourhoods of x and f(x), respectively. Put
H = Int Cl Q{. Choose a neighbourhood W of f(x) such that

Cl WCV. From the almost quasicontinuity at x there is an

open nonempty set B C U MNH such that +'1<w) is dense in

G. Since B CCl @ there is a point y € Qf NG. Let 5 be

'f'
an arbitrary neighbourhood of f(y). From the quasicontinuity
at y there is a nonempty open set T C G such that f(T) C

From the density of f_ltw) in G we have f-l

(W) NT »& 2.

Then @ # W N £(T) € W NS. Thus each neighbourhood & of ¢
intersects the set W, which yields f(y) € Cl W C V., Therefor
\% is a neighbourhood of f(y). From the quasicontinuity at

Yy there is a nonempty open set E C U such that f(E) C V.

Therefore x € Qf.

We recall that a set A 1is said to be quasiclosed ( alsc

samiclosed ) ¢ Int Cl1 A CA.
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Proposition 1. Let Y be a regular space. If Ffi1X =2 VY

is almost quasicontinuous, then Qf is a quasiclosed set.

From the Lemma 1 we get

Theorem 1. Let Y be a regular space. Then f1X > Y |is
quasicontinuous if and only if it is almost quasicontinuous

and Q‘ is dense set in X.

The following example shows that the assumption of the

regularity of Y in Theorem 1 cannot be omitted.

Example 1. Let X = R with the usual topology. Let
Y = {a, b)Y, ¥ = (&, (b)Y, Y). Let Ffs1X VY, f(x) = a for
X € Q, f(x) = b otherwise. Then f is almost quasicontinuous,

the set G!‘c is dense in X, however + is not quasicontinuous.

Lemma 2. Let Y be a metric space with a metric d.

Than B, N Int A

f ¢ © G

Proof. Let x € B{ N Int Af. Let U be a neighbourhood

of x and & » 0. Since x € Bf, there is a nonempty open set
GCUNInt A{ such that the set H = f_i(S(f(x), £/2))

( where S(f(x), €/2) = {(w € Y1 d(f(x), w) < £/2) ) is dense
in G. Let y € G NH. From the cliquishness at y there is

a nonempty open set S C G such that d(f(u), f(v)) < £/2
for all u, ve€ s, Since H is dense in G, there is

z € HNS. Let t € 8§ be an arbitrary point. Then

dif(x), f(t)) S d(fix), f(z)) + d(f(z), F(t)) < &/2 + /2 =T,

Therefore x € Qf.
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From Lemma 2 we get

Theorem 2. Let Y be a metric space. Then fi1X Y is
quasicontinuous if and only if it is almost quasicontinuous

and cliquish.

We shall give a simultaneous generalization of Theorems

1 and 2.

Definition 2. Denote Lf = {x € X3 there is a base B of
neighbourhoods of f(x) such that for each B € B8 there is
& neighbourhood U of x such that the set

£ 1B - 1nt +1(B) is nowhere dense in U>.

Remark 3. We observe that X = Bf U L;.

Lemma 3. Let f:1X 2 Y be a function. Then Int Q{ c L¥.

Proof. Let x € Int @Q,. Let B be an open neighbourhood

f
and H = f_l 1

of F(x). Put G = Int Q (B) - Int £

” (B). We
shall show that H is nowhere dense in G. By contradiction.
Let KCG be a nonempty open set such that H is dense in K.
Let y € HN K. Then K is a neighbourhood of y and B is
a neighbourhood of f(y). Hence from the qQuasicontinuity at vy
there is a nonempty open set L C K such that f(L) C B.
Thus L € £ 2(B), which yields L C Int f (B). Hence L NH = &,

which contradicts the density H in K.

Corollary 1. If +i1X * Y is quasicontinuous, then L{ = X,

Remark 4. It is easy to see that if f is continuous at
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X, then x €« Lf. The following example shows that this assertion

does not hold for quasicontinuity points.

Example 2. Let fitR ? R, f(x) = x for x € @, x & O,

f(x) = -1 for x € Q, x < O and Ff(x) = 0 optherwise. Then

Lamma 4. Let Y be a regular space. Then

Int C1 Qf c L{ U Qf.

Proof. According to Remark 3 and Lemma 1 we get
Int Cl 0; = (Bf 8 L*) N Int Cl Qf = (B* N Int Cl Qf) (8

U (l..f N Int Cl 0{) = Q{ U Lo

Proposition 2. Let Y be a regular space. Let [ be

¥

a dense set in X. Then X = L{ U Qf.

Proposition 3. 1If X = L{ (8 Gf, then the set Lf is

dense in X.

Proof. Since X - Lf c Qf, according to Lemma 3 we have
Int (X - L§) C Int Qf c Lf. On the other hand evidently

Int (X - Lf) CX —-L,. Hence Int (X - L

$ f) = @, i. e. the set

L{ ig dense in X.

Corollary 2. Let Y bDe a regular space. If the set Df

is dense in X, then the set Lf is dense in X.

Leama S. Let Y be a metric space. Then Int Ag c Ls U Qf.

Proof. According to Remark 3 and Lemma 2 we have Int A* =

- (Bf U Lf) NiIint A_ = (B_ N Int Af) U (L* N Iint A

§ P yca

§ P U Lg-
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Proposition 4. Let Y be a metric space. Let f1X * Y be

cliquish. Then X = Lf U Q{.

From Propositions 3 and 4 we get

Corollary 3. Let Y be a metric space. Let f1X * Y be
cliquish. Then the set L‘ is dense in X.

Lemma b6. Let f31X * Y be a function. Then Bf N L{ C Qf.

Proof. Let x € Bf n L{. Let U and V be neighbourhoods

of x and f(x), respectively. Let B be a neighbourhood of
f (%) such that B CV and let T be a neighbourhood of x
such that the set H = f_l(B) - Int {-I(B) is nowhere dense

in T. Since x € Bf, there is a nonempty open set B C UNT
such that f-ltn) is dense in G. Since H 1is nowhere dense
in T, there is a nonempty open set K C G such that H N K = &.

Since f_I(B) is dense in G, we have f-l(B) NK»#& @. Since

HNK = ¢, we get Int f—l 1

(B) NK £ &. Put S = Int £ "(B) N K.

Then S is a nonempty open subset of U and €(S) C V.

Therefore »x €& Qf.

Theorem 3. Let Y be a regular space. Then Fi1X = Y is
quasicontinuous if and only if it is almost quasicontinuous

and the set Lf is dense in X.

Proof. Necessity. According to Theorem 1 and Corollary 2.

Sufficiency. According to Lemma &6 and Theorem 1.

Clearly, Theorem I is a generalization of Thecrems 1
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and 2 ( by Corollary 3 ). Now we shall give other generalization

of Theorams 1 and 2 ( by Propositions 2 and 4, respectively),

where the regularity of a range space is not required.

Theorem 4. Let fi1X ® Y be a function. Then the following

three conditions are equivalent:

(i) ¥ 1is quasicontinuouss

(ii) f 1is almost quasicontinuous and Lf = X3

(i1i) f 1is almost quasicontinuous and X = l_f U Qf.
Proof.

(1) 9 (ii): according to Remark 1 and Corollary 1.

(1i) = (iii)s obvious.

(i1i) = (i): according to Lemma & we have X = L* U (:I_F =

= Bf n (Lf v Qf) C (3B, N Lf) U Qf caQ

f £°

By the definition of the simply continuity we get

Lemma 7. Let f1X Y be a simply continuous function.

Then L, = X.

P ( The converse is not true, as the Riemann

function shows. )

Theorem S. A function f:X ?* Y is quasicontinuocus if

and only if it is almost quasicontinuous and simply continuous.

Proof. According to Lemma 7 and Theorem 4.

Now we shall give a certain characterization of the

cliquishness. We recall that a topological space X has the

Souslin property ( see (43 p. 861 ) if every family of

Pairwise disjoint nonempty open subsets of X is countable.
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Definition 3. We say that a topological space X has the
locally Souslin property i1f for each point of X there is
its neighbourhood, which ( as a subspace of X ) has the

Souslin property.

Example 3. Every uncountable discrete topological space

has the locally Souslin property, however it has not the Souslin

property.
By @ routine way we can prove

Lemma 8. A topological space X is completely regular
if and only if for each a € X and each neighbourhood U of
a there is a family <{B_.) of open neighbourhoods of

£°te(0,1]
a such that Cl B? c B£ CU for 0<C <& 1.

Theorem 6. Let a topological space X have the locally
Souslin property, let Y be a completely regular space and

let f:X 2 Y be a function. 1If the set lIJ‘F is dense in X,

then Lf = X,

Proof. Let x @ X - Lf. Then there is a neighbourhood W
of +F(x) such that for each neighbourhood V of f(x), VCW
and e@ach neighbourhood T of x, the set £ 1(V) = Int £ 1(V)
is not nowhere dense in T. Let U be a neighbourhood of x
such that every family of pairwise disjoint nonempty open
subsets of U is countable. Let (38)86(0,1] be a family
of open neighbourhocods of £(x) such that Cl BY c B& CwW
for 0 < ¥ <8 K1. Let 0 <C €< 1. Then the set H, =

C
-1 -
- (Bc) - Int f l(Bc) is not nowhere dense in U. Therefore
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there is a nonempty open set Gc C U such that Hc is dense

in Gc. Since Q{ is dense in X, there is a point 2z € Qf N G, -

Let § be an arbitrary neighbourhood of €(z). From the
quasicontinuity at z there is a nonempty open set E C Gg
such that f(E) C S, Since Hy 18 dense in G,, there is a
point we& H., NE. Then f(w) € § 1N B,.. Therefore each

neighbourhoaod S of f(z2) intersects the set B i. e.

c'
£(z) « C1 Bc' We shall show that f(z) & Bc' By contradiction.

Suppose that f(z) Bc. From the quasicontinuity at =z there

is a nonempty orPen set K C Bc such that f(K) C Bc' This

1

vields K C ¢ '(B,) and hence also K C Int f—l(Bc). Since

Hc is dense in Bc' there is a point v € Hc N K. Therefore

veH, CX=- Int ¢

(Bc) and simultanecusly v € K C Int f—l(Bc).
a contradiction. Therefore +f(z) &€ Cl Bc - Bc. From this we

get 4(0{ N Bc) cCl Bc - Bc. Thus we have constructed a family

{GC}Ce(O,l) of nonempty open subsets of U. We shall show that
{88}86(0,1) is & family of pairwise disjoint sets. By contra-

diction. Suppose that there is 0 < ¥ < & < 1 such that

G = G? N B£ is a nonempty set. Since Qf is dense in X,

there is & point u € g N Qf. Then f(u) € Cl BY - B? c
C — -
cCl B? B£ and simultaneocusly f(u) € Cl Bé B£ cC X Ba.
& contradiction. From the definition of the set U it follows
that {GC)Ce(o,1) is & countable family and this contradicts

to the uncountability of the interval (O, 1). Therefore

X"L{-¢,i.9. x-L_f.

The following example shows that the assumption of the

locally Bouslin property in Theorem 6 cannot be omitted.
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Example 4. We put T = A X 1, where A = (a € RNx

a & a for all nNn €N and lima_ =0 and I = [0, 1].
n n+1 N0 n
Let S = U (R X {(t)) with the sum topology ¢©. Let
teT

+

X = S U (0 with & topology T = ¢ U {X). Let Q =
{ql, s qs. eee Y be the set of all positive rational
numbers. For each t = (a, r) € T define a function

ftzR X {tY 2 R as follows: ft(x) = r + an. if x = (qn. t)s

ft(x) = r - an. if x = (-qn, t) and ft(x) = r otherwise.
Now we define a function f: X P R as f(x) = ft(x) for
X € RX {t) and f(x) = 0 otherwise.

Then the set @, = U ((R - Q) X {t)) 1is dense in X

o oter
( and f 1is cliquish ), however Lf ¥ X.
We shall show that O € L,. Let B be an arbitrary bounded

+
neighbourhood of the point 0 ( in R ). Put r = gsup B. We

-1 1

shall show that (B) - Int £ "(B) i€ not nowhere dense

in X (X is only neighbourhood of O in X ).
a) Suppose that r € B. Choose an arbitrary point a € A.
Put G = (0, @ X {(a, r)). Then G is a nonempty open

subset of X such that § 1

-1

(B) NGB = ((O, w0) — Q) X {(a, r).

This yields that f 1

(B) -— Int § "(B) is dense in B.

b) Suppose that r & B. Choose a € A such that r - a €B
for all n € N. Put G = (-», 0) X {(a, r)). Then G is a
nonempty oren subset of X such that  Y(B) NG =

= ((~0,0) N @) X {(a, r)). This yields that £ 1(B) - Int £ 1 (B)

is dense in G.

Lemma 9. Let Y be a second countable space and let
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1 X Y be a function. Then Lf - Q{ is a set of the first

category.

Proof. In the paper [11] it is proved that X - Hf is a set
of the first category for second countable range space. Hence

according to Remark 1 and Lemma &6 we have Lf - Df c

cL, - (Lf N Bf) c Lf - B{ cCXx - Bf C X - Hf, therefore

£
Lf - Qf igs a set of the first category.

Proposition S. Let X be a Baire space and let Y be
a regular second countable space. Let f1X Y be a function.

Then the set Q{ is dense in X {if and only if X = L{ U Qf.

Proof. Necessity. According to Proposition 2.

Sufficiency. According to Lemma 9 the set X - Qf =

= (L* U Q{) - Q# = L{ - Q* is a set of the first category.

Since X is a Baire space, the set Qf is dense in X.

Corollary 4. Laet X be a Baire space and Y be a

separable metric space. Then 313X * Y is cliquish if and

only if X = Lf U Q{.

Proof. According to Propositions 4 and S.

Now we shall give a new characterization of the

cliquishness.

Theorem 7. Let X be a Baire space with the locally
Souslin property. Let Y be a separable metric space. Then

fi1X 2?2 Y is & cliquish function if and only if X = L;-

Proof. According to Corollary 4, Proposition 5 and

303



Theorem 6.

Corollary 5. A function ftR * R is cliquish if and

only if Lf = R.

Remark 5. The assumption ”Lf = R" in Corollary 5
cannot be replaced by the assumption "Lf is dense in R"“.
The function f:tR * R, f(x) = q for x = p/q, where p, q

are relatively prime integers, q > 0, f(x) = 0 otherwise, is

not cliquish, however the set Lf is dense in R.

Remark 6. There is a real function +Ff:X * R such that
f is not cliquish, however Lf = X. Let X =N and let ¥
be an ultrafilter in X, which contains no finite set. Let X be
assigned the topology 7 = F U (#). Define Fi1X * R as

f(x) = x for all x & X. Then L{ = X, however Af = @

( see (3] ).
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