## Real Analysis Exchange Vol 16 (1990-91)

Ján Borsik, Matematický ústav SAV, Grešákova 6, 040 01 Košice, Czechoslovakia

Jozef Doboš, Katedra matematiky VŠT, Švermova. 9, 040 01 Košice, Czechoslovakia

## ON DECOMPOSITIONS OF QUASICONTINUITY

There are many papers which deal with decompositions of continuity ( see for example [2], [5], [6], [10] ). The purpose of this note is to investigate similar questions for the quasicontinuity. A characterization of the cliquishness on Baire spaces is given.

In what follows X, Y denote topological spaces. For a subset A of a topological space denote Cl A and Int A the closure and the interior of A, respectively. The letters N, Q and R stand for the set of natural, rational and real numbers, respectively.

We recall that a function  $f:X \to Y$  is almost continuous (also nearly continuous) at a point  $x \in X$  (see [7]) if for each neighbourhood V of f(x), the set  $C1 \ f^{-1}(V)$  is a neighbourhood of x. Denote by  $H_f$  the set of all such points at which f is almost continuous. If  $H_f = X$ , then f is said to be almost continuous.

A function  $f:X \to Y$  is quasicontinuous at a point  $x \in X$  (see [9]) if for each neighbourhood U of x and each neighbourhood V of f(x) there is a nonempty open set G C U such that  $f(G) \subset V$ . Denote by  $Q_f$  the set of all points at which f is quasicontinuous. If  $Q_f = X$ , then f is said to be quasicontinuous.

A function  $f:X \to Y$  is simply continuous ( see [1] ) if for each open set V in Y, the set  $f^{-1}(V)$  is a union of an open set and a nowhere dense set in X.

It is easy to see that every quasicontinuous function is simply continuous.

Let Y be a metric space with a metric d. A function  $f:X \to Y$  is cliquish at a point  $x \in X$  ( see [9] ) if for each  $\varepsilon > 0$  and each neighbourhood U of x there is a nonempty open set  $G \subset U$  such that  $d(f(y), f(z)) < \varepsilon$  for each  $y, z \in G$ . Denote by  $A_f$  the set of all points at which f is cliquish. If  $A_f = X$ , then f is said to be cliquish.

The set  $A_f$  is closed in X ( see [8] ). Hence, if Y is a metric space and  $f\colon X\to Y$  is a function such that.  $Q_f$  is dense in X, then f is cliquish.

Now we shall give a simultaneous generalization of the almost continuity and of the quasicontinuity.

Definition 1. We say that  $f:X\to Y$  is almost quasi-continuous at a point  $x\in X$ , if for each neighbourhood V of f(x) and each neighbourhood U of x, the set  $f^{-1}(V)\cap U$  is not nowhere dense. Denote by  $B_f$  the set of all points

at which f is almost quasicontinuous. If  $B_f = X$ , we say that f is almost quasicontinuous.

Remark 1. It is easy to see that  $H_{\epsilon} \cup Q_{\epsilon} \subset B_{\epsilon}$ .

Remark 2. Evidently, a function f is almost quasicontinuous at x if and only if for each neighbourhood U of x and each neighbourhood V of f(x) there is a nonempty open set  $G \subseteq U$  such that  $G \subseteq Cl \ f^{-1}(V)$ .

Lemma 1. Let Y be a regular space. Then  $\mathbf{B}_{\mathbf{f}} \ \cap \ \mathbf{Int} \ \mathbf{Cl} \ \mathbf{Q}_{\mathbf{f}} \subset \mathbf{Q}_{\mathbf{f}}.$ 

Proof. Let  $x \in B_f \cap Int \cap \Omega_f$ . Let U and V be open neighbourhoods of X and f(X), respectively. Put  $H = Int \cap \Omega_f$ . Choose a neighbourhood W of f(X) such that  $\cap I$   $\cap I$ 

We recall that a set A is said to be quasiclosed ( also semiclosed ) if  $Int Cl A \subset A$ .

Proposition 1. Let Y be a regular space. If f:X  $\rightarrow$  Y is almost quasicontinuous, then  $\mathbb{Q}_r$  is a quasiclosed set.

From the Lemma 1 we get

Theorem 1. Let Y be a regular space. Then f:X  $\to$  Y is quasicontinuous if and only if it is almost quasicontinuous and  $\Omega_4$  is dense set in X.

The following example shows that the assumption of the regularity of Y in Theorem 1 cannot be omitted.

Example 1. Let X = R with the usual topology. Let  $Y = \{a, b\}, \forall = \{\emptyset, \{b\}, Y\}$ . Let  $f:X \to Y$ , f(x) = a for  $x \in Q$ , f(x) = b otherwise. Then f is almost quasicontinuous, the set  $Q_f$  is dense in X, however f is not quasicontinuous.

Lemma 2. Let Y be a metric space with a metric d. Then  $B_r \cap Int A_r \subset Q_r$ .

Proof. Let  $x \in B_f \cap Int A_f$ . Let U be a neighbourhood of X and  $\mathcal{E} > 0$ . Since  $x \in B_f$ , there is a nonempty open set  $G \subset U \cap Int A_f$  such that the set  $H = f^{-1}(S(f(x), \mathcal{E}/2))$  (where  $S(f(x), \mathcal{E}/2) = \{w \in Y: d(f(x), w) < \mathcal{E}/2\}$ ) is deqse in G. Let  $y \in G \cap H$ . From the cliquishness at y there is a nonempty open set  $S \subset G$  such that  $d(f(u), f(v)) < \mathcal{E}/2$  for all  $u, v \in S$ . Since H is dense in G, there is  $z \in H \cap S$ . Let  $t \in S$  be an arbitrary point. Then  $d(f(x), f(t)) \leq d(f(x), f(z)) + d(f(z), f(t)) < \mathcal{E}/2 + \mathcal{E}/2 = \mathcal{E}$ . Therefore  $x \in Q_f$ .

From Lemma 2 we get

Theorem 2. Let Y be a metric space. Then  $f:X \to Y$  is quasicontinuous if and only if it is almost quasicontinuous and cliquish.

We shall give a simultaneous generalization of Theorems 1 and 2.

Definition 2. Denote  $L_f = \{x \in X: \text{ there is a base } \mathbb{R} \text{ of neighbourhoods of } f(x) \text{ such that for each } \mathbb{R} \in \mathbb{R} \text{ there is a neighbourhood } \mathbb{U} \text{ of } x \text{ such that the set}$   $f^{-1}(\mathbb{R}) = \text{Int } f^{-1}(\mathbb{R}) \text{ is nowhere dense in } \mathbb{U}\}.$ 

Remark 3. We observe that  $X = B_f \cup L_f$ .

Lemma 3. Let  $f:X \to Y$  be a function. Then Int  $Q_f \subset L_f$ .

Proof. Let  $x \in Int \Omega_f$ . Let B be an open neighbourhood of f(x). Put  $G = Int \Omega_f$  and  $H = f^{-1}(B) - Int f^{-1}(B)$ . We shall show that H is nowhere dense in G. By contradiction. Let  $K \subseteq G$  be a nonempty open set such that H is dense in K. Let  $y \in H \cap K$ . Then K is a neighbourhood of Y and B is a neighbourhood of f(y). Hence from the quasicontinuity at Y there is a nonempty open set  $L \subseteq K$  such that  $f(L) \subseteq B$ . Thus  $L \subseteq f^{-1}(B)$ , which yields  $L \subseteq Int f^{-1}(B)$ . Hence  $L \cap H = \emptyset$ , which contradicts the density H in K.

Corollary 1. If  $f:X \to Y$  is quasicontinuous, then  $L_x = X$ .

Remark 4. It is easy to see that if f is continuous at

x, then  $x \in L_f$ . The following example shows that this assertion does not hold for quasicontinuity points.

Example 2. Let  $f:R \to R$ , f(x) = x for  $x \in \mathbb{Q}$ ,  $x \ge 0$ , f(x) = -1 for  $x \in \mathbb{Q}$ , x < 0 and f(x) = 0 otherwise. Then  $0 \in \mathbb{Q}_{+} - \mathbb{L}_{+}$ .

Lemma 4. Let Y be a regular space. Then  $\label{eq:lemma_form} \mbox{Int Cl } \mathbb{Q}_{_{\! f}} \subset \mathbb{L}_{_{\! f}} \mbox{ } \mathbb{U} \mbox{ } \mathbb{Q}_{_{\! f}}.$ 

Proposition 2. Let Y be a regular space. Let  $\mathbb{Q}_f$  be a dense set in X. Then  $X = \mathbb{L}_f \cup \mathbb{Q}_f$ .

**Proposition 3.** If  $X = L_f \cup Q_f$ , then the set  $L_f$  is dense in X.

Proof. Since  $X - L_f \subseteq Q_f$ , according to Lemma 3 we have Int  $(X - L_f) \subseteq Int Q_f \subseteq L_f$ . On the other hand evidently Int  $(X - L_f) \subseteq X - L_f$ . Hence Int  $(X - L_f) = \emptyset$ , i. e. the set  $L_f$  is dense in X.

Corollary 2. Let Y be a regular space. If the set  $\Omega_{\hat{f}}$  is dense in X, then the set  $L_{\hat{f}}$  is dense in X.

Lemma 5. Let Y be a metric space. Then Int  $A_{\mathfrak{p}} \subseteq L_{\mathfrak{p}} \cup \mathbb{Q}_{\mathfrak{p}}$ .

Proof. According to Remark 3 and Lemma 2 we have Int  $A_f = (B_f \cup L_f) \cap Int A_f = (B_f \cap Int A_f) \cup (L_f \cap Int A_f) \cup (L_f \cap Int A_f)$ 

Proposition 4. Let Y be a metric space. Let fiX  $\rightarrow$  Y be cliquish. Then X = L<sub>f</sub> U Q<sub>f</sub>.

From Propositions 3 and 4 we get

Corollary 3. Let Y be a metric space. Let  $f:X \to Y$  be cliquish. Then the set  $L_f$  is dense in X.

Lemma 6. Let  $f:X \to Y$  be a function. Then  $B_f \cap L_f \subset Q_f$ .

Proof. Let  $x \in \mathbb{B}_f \cap L_f$ . Let U and V be neighbourhoods of X and f(X), respectively. Let B be a neighbourhood of f(X) such that  $B \subset V$  and let T be a neighbourhood of X such that the set  $H = f^{-1}(B) - Int f^{-1}(B)$  is nowhere dense in T. Since  $X \in \mathbb{B}_f$ , there is a nonempty open set  $G \subset U \cap T$  such that  $f^{-1}(B)$  is dense in G. Since H is nowhere dense in T, there is a nonempty open set  $K \subset G$  such that  $H \cap K = \emptyset$ . Since  $f^{-1}(B)$  is dense in G, we have  $f^{-1}(B) \cap K \neq \emptyset$ . Since  $H \cap K = \emptyset$ , we get  $Int f^{-1}(B) \cap K \neq \emptyset$ . Put  $S = Int f^{-1}(B) \cap K$ . Then S is a nonempty open subset of U and  $f(S) \subset V$ .

Theorem 3. Let Y be a regular space. Then fix  $\to$  Y is quasicontinuous if and only if it is almost quasicontinuous and the set  $L_x$  is dense in X.

Proof. Necessity. According to Theorem 1 and Corollary 2. Sufficiency. According to Lemma 6 and Theorem 1.

Clearly, Theorem 3 is a generalization of Theorems 1

and 2 (by Corollary 3). Now we shall give other generalization of Theorems 1 and 2 (by Propositions 2 and 4, respectively), where the regularity of a range space is not required.

Theorem 4. Let  $f:X \to Y$  be a function. Then the following three conditions are equivalent:

- (i) f is quasicontinuous;
- (ii) f is almost quasicontinuous and  $L_{\mu} = X_{3}$
- (iii) f is almost quasicontinuous and  $X = L_f \cup Q_f$ .

Proof.

- (i)  $\Rightarrow$  (ii): according to Remark 1 and Corollary 1.
- (ii) ⇒ (iii): obvious.
- (iii)  $\Rightarrow$  (i): according to Lemma 6 we have  $X = L_f \cup Q_f =$ =  $B_f \cap (L_f \cup Q_f) \subset (B_f \cap L_f) \cup Q_f \subset Q_f$ .

By the definition of the simply continuity we get

Lemma 7. Let  $f:X \to Y$  be a simply continuous function. Then  $L_f = X$ . (The converse is not true, as the Riemann function shows.)

Theorem 5. A function  $f:X \to Y$  is quasicontinuous if and only if it is almost quasicontinuous and simply continuous.

Proof. According to Lemma 7 and Theorem 4.

Now we shall give a certain characterization of the cliquishness. We recall that a topological space X has the Souslin property ( see [4; p. 86] ) if every family of pairwise disjoint nonempty open subsets of X is countable.

Definition 3. We say that a topological space X has the locally Souslin property if for each point of X there is its neighbourhood, which ( as a subspace of X ) has the Souslin property.

Example 3. Every uncountable discrete topological space has the locally Souslin property, however it has not the Souslin property.

By a routine way we can prove

Lemma 8. A topological space X is completely regular if and only if for each a  $\in$  X and each neighbourhood U of a there is a family  $\{B_{\mathcal{E}}\}_{\mathcal{E}\in\{0,1\}}$  of open neighbourhoods of a such that  $Cl\ B_{\gamma}\subset B_{\mathcal{E}}\subset U$  for  $0<\gamma<\delta\leq 1$ .

Theorem 6. Let a topological space X have the locally Souslin property, let Y be a completely regular space and let  $f:X \to Y$  be a function. If the set  $Q_f$  is dense in X, then  $L_f = X$ .

Proof. Let  $x \in X - L_f$ . Then there is a neighbourhood W of f(x) such that for each neighbourhood V of f(x),  $V \subset W$  and each neighbourhood T of x, the set  $f^{-1}(V) - Int f^{-1}(V)$  is not nowhere dense in T. Let U be a neighbourhood of x such that every family of pairwise disjoint nonempty open subsets of U is countable. Let  $(B_{\mathcal{L}})_{\mathcal{C} \in \{0,1\}}$  be a family of open neighbourhoods of f(x) such that  $Cl(B_{\mathcal{L}}) \subset B_{\mathcal{L}} \subset W$  for  $0 < Y < \delta \le 1$ . Let  $0 < \varepsilon < 1$ . Then the set  $H_{\mathcal{L}} = f^{-1}(B_{\mathcal{L}})$  is not nowhere dense in U. Therefore

there is a nonempty open set  $\Theta_{\mathcal{C}} \subseteq U$  such that  $H_{\mathcal{C}}$  is dense in  $G_{\epsilon}$ . Since  $Q_{\epsilon}$  is dense in X, there is a point  $z \in Q_{\epsilon} \cap G_{\epsilon}$ . Let S be an arbitrary neighbourhood of f(z). From the quasicontinuity at z there is a nonempty open set  $E \subseteq G_{\Sigma}$ such that  $f(E) \subseteq S$ . Since  $H_E$  is dense in  $G_E$ , there is a point  $w \in H_c$   $\cap E$ . Then  $f(w) \in S \cap B_c$ . Therefore each neighbourhood S of f(z) intersects the set  $B_z$ , i. e.  $f(z) \in Cl \ B_{c}$ . We shall show that  $f(z) \notin B_{c}$ . By contradiction. Suppose that  $f(z) \in B_{\varepsilon^*}$  From the quasicontinuity at z there is a nonempty open set  $K \subseteq G_{\varepsilon}$  such that  $f(K) \subseteq B_{\varepsilon}$ . This yields  $K \subseteq f^{-1}(B_E)$  and hence also  $K \subseteq Int f^{-1}(B_E)$ . Since  $H_{\rm E}$  is dense in  $G_{\rm E}$ , there is a point  $v\in H_{\rm E}\cap K$ . Therefore  $v \in H_E \subset X - Int f^{-1}(B_E)$  and simultaneously  $v \in K \subset Int f^{-1}(B_E)$ , a contradiction. Therefore  $f(z) \in C1 \ B_{\varepsilon} - B_{\varepsilon}$ . From this we get  $f(Q_f \cap G_c) \subseteq C1 \setminus B_c = B_c$ . Thus we have constructed a family  $\{G_{\mathcal{L}}\}_{\mathcal{L} \subset \{0,1\}}$  of nonempty open subsets of U. We shall show that  $\{G_{\mathcal{E}}\}_{\mathcal{E}\in\{0,1\}}$  is a family of pairwise disjoint sets. By contradiction. Suppose that there is  $0 < 2 < \delta < 1$  such that  $G = G_{\gamma} \cap G_{\zeta}$  is a nonempty set. Since  $\Omega_{\gamma}$  is dense in X, there is a point  $u \in G \cap Q_f$ . Then  $f(u) \in Cl B_{\gamma} - B_{\gamma} \subset$  $\subseteq$  C1 B<sub>y</sub>  $\subseteq$  B<sub>z</sub> and simultaneously  $f(u) \in$  C1 B<sub>x</sub> = B<sub>x</sub>  $\subseteq$  X = B<sub>x</sub>, a contradiction. From the definition of the set U it follows that  $(G_{\varepsilon})_{\varepsilon \in (O-1)}$  is a countable family and this contradicts to the uncountability of the interval (0, 1). Therefore  $X - L_f = \emptyset$ , i. e.  $X = L_f$ .

The following example shows that the assumption of the locally Bouslin property in Theorem 6 cannot be omitted.

Example 4. We put  $T = A \times I$ , where  $A = \{a \in R^N\}$  $a_n \ge a_{n+1}$  for all  $n \in \mathbb{N}$  and  $\lim_{n\to\infty} a_n = 0$  and  $\mathbb{I} = [0, 1]$ . Let S = U (R × {t}) with the sum topology  $\sigma$ . Let X = SU(0) with a topology  $T = \sigma U(X)$ . Let  $Q^{+} =$  $\{q_1, q_2, q_3, \dots \}$  be the set of all positive rational numbers. For each  $t = (a, r) \in T$  define a function  $f_{\downarrow}:R \times \{t\} \rightarrow R$  as follows:  $f_{\downarrow}(x) = r + a_n$ , if  $x = (q_n, t)$ ;  $f_{+}(x) = r - a_{n}$ , if  $x = (-q_{n}, t)$  and  $f_{+}(x) = r$  otherwise. Now we define a function fr  $X \rightarrow R$  as  $f(x) = f_{\pm}(x)$  for  $x \in R \times \{t\}$  and f(x) = 0 otherwise. Then the set  $Q_f = U$  ((R - Q) × (t)) is dense in X teT (and f is cliquish), however  $L_{\epsilon} \neq X_{\epsilon}$ We shall show that  $0 \notin L_{4}$ . Let B be an arbitrary bounded neighbourhood of the point O (in R). Put  $r = \sup B$ . We shall show that  $f^{-1}(B) - Int f^{-1}(B)$  is not nowhere dense in X ( X is only neighbourhood of O in X ). a) Suppose that  $r \in B$ . Choose an arbitrary point  $a \in A$ . Put  $B = (0, \infty) \times \{(a, r)\}$ . Then B is a nonempty open subset of X such that  $f^{-1}(B) \cap G = ((0, \infty) - Q) \times \{(a, r)\}.$ This yields that  $f^{-1}(B) - Int f^{-1}(B)$  is dense in B. b) Suppose that  $r \notin B$ . Choose a  $\in A$  such that  $r - a_n \in B$ for all  $n \in \mathbb{N}$ . Put  $G = (-\infty, 0) \times \{(a, r)\}$ . Then G is a nonempty open subset of X such that  $f^{-1}(B) \cap G =$ =  $((-\infty,0) \cap \mathbb{Q}) \times ((a, r))$ . This yields that  $f^{-1}(B) - Int f^{-1}(B)$ is dense in G.

Lemma 9. Let Y be a second countable space and let

fiX  $\Rightarrow$  Y be a function. Then  $L_f = Q_f$  is a set of the first category.

Proof. In the paper [11] it is proved that  $X = H_f$  is a set of the first category for second countable range space. Hence according to Remark 1 and Lemma 6 we have  $L_f = Q_f \subset L_f = (L_f \cap B_f) \subset L_f = B_f \subset X = B_f \subset X = H_f$ , therefore  $L_f = Q_f$  is a set of the first category.

Proposition 5. Let X be a Baire space and let Y be a regular second countable space. Let  $f:X \to Y$  be a function. Then the set  $\Omega_f$  is dense in X if and only if  $X = L_f \cup \Omega_f$ .

Proof. Necessity. According to Proposition 2. Sufficiency. According to Lemma 9 the set  $X - Q_f = (L_f \cup Q_f) - Q_f = L_f - Q_f$  is a set of the first category. Since X is a Baire space, the set  $Q_f$  is dense in X.

Corollary 4. Let X be a Baire space and Y be a separable metric space. Then fix  $\rightarrow$  Y is cliquish if and only if  $X = L_f \cup Q_f$ .

Proof. According to Propositions 4 and 5.

Now we shall give a new characterization of the cliquishness.

Theorem 7. Let X be a Baire space with the locally Souslin property. Let Y be a separable metric space. Then  $f:X \to Y$  is a cliquish function if and only if  $X = L_x$ .

Proof. According to Corollary 4, Proposition 5 and

Theorem 6.

Corollary 5. A function  $f:R \to R$  is cliquish if and only if  $L_f = R$ .

Remark 5. The assumption " $L_f = R$ " in Corollary 5 cannot be replaced by the assumption " $L_f$  is dense in R". The function  $f:R \to R$ , f(x) = q for x = p/q, where p, q are relatively prime integers, q > 0, f(x) = 0 otherwise, is not cliquish, however the set  $L_f$  is dense in R.

Remark 6. There is a real function  $f:X \to R$  such that f is not cliquish, however  $L_f = X$ . Let X = N and let  $\mathcal F$  be an ultrafilter in X, which contains no finite set. Let X be assigned the topology  $\mathcal F = \mathcal F \cup \{\emptyset\}$ . Define  $f:X \to R$  as f(x) = x for all  $x \in X$ . Then  $L_f = X$ , however  $A_f = \emptyset$  (see [3]).

## **REFERENCES**

- [1] N. Biswas, On some mappings in topological spaces,
  Bull. Calcutta Math. Soc. 61, 1969, 127-135.
- [2] J. Borsik J. Doboš, On certain decompositions of continuity, submitted in Rend. Ist. Matem. Univ. Trieste.
- [3] J. Doboš, Simple continuity and cliquishness, Časopis pěst. mat. 112, 1987, 355-358.
- [4] R.Engelking, General Topology, PWN, Warszawa 1977.

- [5] L. A. Fudali, On cliquish functions on product spaces,
  Math. Slovaca 33, 1983, 53-58.
- [6] C. Holá, Some conditions that imply continuity of almost continuous multifunctions, Acta Math. Univ. Comen. 52-53, 1987, 159-165.
- [7] T. Husain, Almost continuous mappings, Ann. Soc. Math. Polon. Comment. Math. 10, 1966, 1-7.
- [8] J. S. Lipinski T. Šalát, On the points of quasicontinuity and cliquishness of functions, Czechoslovak Math. J. 21 (96), 1971, 484-489.
- [9] S. Marcus, Sur les fonctions quasicontinues au sens de S. Kempisty, Colloq. Math. 8, 1961, 47-53.
- [10] J. Smital E. Stanová, On almost continuous functions, Acta Math. Univ. Comen. 37, 1980, 147-155.
- [11] M. Wilhelm, Nearly lower semicontinuity and its applications, Proc. Fifth Prague Topol. Symp. 1981, 692-698.

## Received November 8, 1989