Jozef Doboš, Katedra matematiky VŠT, Švermova 9, 040 01 Košice, Czechoslovakia

ON EXTREMAL VALUES OF CONTINUOUS MONOTONE FUNCTIONS

The notion of monotone for continuous functions was introduced by G.T. Whyburn [3]. The purpose of this note is to investigate extremal values of continuous monotone functions of several variables.

<u>Definition</u>. (Also see [2].) Let X be a topological space. A function $f: X \to R$ is said to be monotone if for each point $y \in R$, $f^{-1}(y)$ is connected in X.

<u>Lemma</u>. (See [1].) Let X be a locally connected space. Then $f: X \to R$ is continuous if and only if f has the Darboux property and there is a dense set $P \subset R$ such that $f^{-1}(p)$ is closed for each $p \in P$. (Recall that f is said to have the Darboux property if it maps connected sets to connected sets.)

<u>Proposition</u>. Let X be a locally connected space. Let $f: X \to R$ be a monotone function with the Darboux property. Then f is continuous.

<u>Proof.</u> Let $y \in R$. Suppose that $x \in Cl f^{-1}(y)$. Then $A = f^{-1}(y) \cup \{x\}$ is a connected set in X. Thus f(A) is connected in R. Hence f(x) = y. Therefore $f^{-1}(y)$ is closed

Theorem. Let X be a T_3 -space without isolated points. Suppose that for each $x \in X$ there is a base B(x) of open neighborhoods of x such that for each $B \in B(x)$ the sets B, X - B are connected and FrB is compact (where FrT = ClT - IntT). Let $f: X \to R$ be a monotone function with the Darboux property. Then f has a strict absolute extremum at any point a where f has a strict relative extremum.

<u>Proof.</u> Suppose f has a strict relative maximum at $a \in X$. (The second case is similar.) Let $b \in X$ such that $f(a) \leq f(b)$. Then there is an open neighborhood U of a such that

(1)
$$\forall x \in U, x \neq a: f(x) < f(a).$$

Since a is an accumulation point of X, there is $c \in U - \{a\}$. Since X is T_3 , there is a closed neighborhood V of a such that $V \subset U - \{c\}$. By the assumption there is an open neighborhood A of a such that $A \subset V$, the sets A, X - A are

connected and Fr A is compact. Since a is an accumulation point of X, there is a $d \in A - \{a\}$.

Now we show that there is a real number r such that

$$\max(f(c), f(d)) < r < f(a),$$

$$f^{-1}(r) \cap Fr A = \emptyset.$$

Suppose that there is no such r. Let $\{r_n\}_{n=1}^{\infty}$ be a sequence of reals such that

$$\max(f(c), f(d)) < r_n < f(a) \quad (n = 1, 2, \ldots),$$
$$r_n \to f(a).$$

Then there are $x_n \in X$ such that $x_n \in f^{-1}(r_n) \cap Fr A$ (n = 1, 2, ...). Since Fr A is compact, there is a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ such that $x_{n_k} \to x_0 \in Fr A$. From the continuity of f it follows that

$$r_{n_k} = f(x_{n_k}) \to f(x_0).$$

Since $r_{n_k} \to f(a)$, we have $f(a) = f(x_0)$, which contradicts (1).

Put B = X - ClA. By (3) we obtain $f^{-1}(r) \subset A \cup B$. By (2) we have f(d) < r < f(a). From the Darboux property of f it follows that there is $u \in A$ such that f(u) = r. Thus $A \cap f^{-1}(r) \neq \emptyset$. By (1) we obtain f(c) < r < f(b). From the Darboux property of f it follows that there is $v \in X - A$ such that f(v) = r. By (3) we have $v \in X - FrA$. Thus $B \cap f^{-1}(r) \neq \emptyset$. Since A, B are open, the set $f^{-1}(r)$ is not connected, which contradicts the assumption.

Corollary. No function $f: \mathbb{R}^n \to \mathbb{R}$ $(n \geq 2)$ which is monotone and has the Darboux property can have relative extremal values.

The following example shows that some of the assumptions of the Theorem cannot be omitted.

Example. Put $X = [0,1] \cap Q$. Define $f: X \to R$ as follows

$$f(x) = 2x + 3 - |2x - 1| + \sqrt{2}(1 - 2x - |2x - 1|) \quad (x \in X).$$

Then f is continuous and monotone. Evidently the point 0 is a strict relative minimum for f, but it is not a strict absolute minimum.

References

- [1] Lipiński, J.S., Une remarque sur la continuité et la connexité, Coll. Math. 19, (1968), 251-253.
- [2] Noiri, T., Regular-closed functions and Hausdorff spaces, Math. Nachr. 99, (1980), 217-219.
- [3] Whyburn, G.T., Non-alternating transformations, Amer. J. of Math. 56, (1934), 294-302.

Received July 13, 1989