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ON DISCONTINUITY POINTS FOR CLOSED
GRAPH FUNCTIONS

We say that a function f from a space X into a space Y has a closed graph
if the graph of the function f, i.e. the set {(z,y) € X x Y;y = f(z)} is a closed
subset of the product X x Y. We denote by C; (D,) the set of all points at
which the function f is continuous (discontinuous).

There are many papers which deal with the set Dy for closed graph functions.
(See for example (1], [2] or [4].) The purpose of the present paper is to continue
the investigation of this set.

Proposition A. (See [4].) Let I C R be an interval. Then for each closed
graph function f : I — R the set Dy is closed and nowhere dense.

Proposition B. (See [1].) Let f : X — R" have a closed graph, where X is
a Hausdorff space. Let z € D;. Then f is unbounded in every neighborhood of
the point z.

Theorem 1. Let f: I — R have a closed graph, where I C R is an intefval.
Let z € Dy. Then for each neighborhood U of z there is an interval J C UN Cy
such that f is unbounded on J.

Proof. Suppose to the contrary that there is a § > 0 such that for each
interval J C (z — 6,z + 6) N I N C; the function f is bounded on J. Put
F =|z-6/2,z46/2]n 1N D;. Since f is a Baire class one function (See
[4].), there is an zq € F such that the function f |r is continuous at zo.- Put
V=(zx-6z+6NINC,; SinceV is open in I, there is a countable family
J of pairwise disjoint open intervals such that V = U J. Since zo € Dy, the
function f is unbounded in each neighborhood of z;. Thus there is a monotone
sequence {z,} of points z, € U such that z, — z, and the sequence {f(z,)} is
unbounded. Suppose that z,, < zo for each n = 1,2,... . (The opposite case is
similar.) Then for each n there is a J, € J such that z,, € J,.. Let J, = (an,by).
Then z, < b, < zo for each n = 1,2,... . Since f has a closed graph and it is
by assumption bounded on each J,, the function f |5- is continuous. Since f |
is continuous at zo, it follows that f(b,) — f(z,). From the Darboux property
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it follows that f assumes any value lying between f(z,) and f(b,) at least once
on J, (n =1,2,...), which contradicts the closedness of the graph of f.

Definition. (See [3].) A function f defined on a topological space X with
range in a topological space Y is said to be quasicontinuous at the point z € X
if for any neighborhood U of the point z and any neighborhood V of f(z) there
is an open set § # G C U such that f(G) C V. A function f is said to be
quasicontinuous if it is quasicontinuous at each point z € X.

Note that if a function h : R —+ R is such that h(z) = sin(1/z) for z # 0, then
h is quasicontinuous if and only if —1 < h(0) < 1; that is, there is a closed graph
function f : R — R such that h(z) = sin(f(z)) for each z € R. The sufficiency
of this condition is true in general as the following theorem shows.

Theorem 2. Let I C R be an interval. Let f : I — R have a closed graph.
Then the composite function h = sin(f) is quasicontinuous.

Proof. Quasicontinuity at the continuity points of f is evident. Suppose
that £ € D;. Let V be an open neighborhood of the point h(z) = sin(f(z)).
From the continuity of sin it follows that the set sin™*(V) is open. Since sin is
periodic, there is an open interval (a,b) such that (a + 2k, b + 2kx) C sin ! (V)
for each integer k. Let § > 0. Since z € Dy, by Theorem 1 there is an jnterval
J C(z—-6,z+6)NINCy such that f is unbounded on J. Suppose that f is
unbounded below on J. (The opposite case is similar.) Let zp € J be arbitrary.
Let ko be an integer such that f(zo) < a + 2kow. From the Darboux property it
follows that there is w € J such that f(w) € (a+ 2kom, b+ 2ko7). Since w € Cy,
there is an interval G C J such that f(G) C (a+2kom,b+2kon). Thus h(G) C V.
This shows that h is quasicontinuous at the point z.

The following example shows that the assumption, “I is an interval” in The-
orem 2 cannot be replaced by the assumption “I is a subset of R”.

Example. Let Q@ = {q;,qs,...} be a countable, dense subset of R. Let
f:Q— R, f(g.) =n7/2 (n=1,2,...). Then f has a closed graph, but sin(J)

is not quasicontinuous.

By the preceding methods it is not difficult to verify (ii) implies (i) of the
following theoremn.

Theorem 3. Let g : R — R be continuous. Then the following statements
are equivalent:

(i) for each closed graph function f : R — R the composite function g(f) is
quasicontinuous,
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(ii) for each open set V in R such that ¢~'(V) # 8, supg™!(V) = oo and
inf g~ !(V) = —oo.

Proof of (i) implies (ii). Deny. Suppose that there is an open set V in R
such that ¢7(V) # @ and supg=!(V) < oo. (The second case is similar.) Let
y € g7!(V) be arbitrary. Let f: R - R, f(0) =y, f(z) =1/ |z | +supg (V)
otherwise. Let G be a nonempty open set in R. Choose £ € G such that

z # 0. Then f(z) > supg~!(V). Thus ¢g(f(z)) ¢ V. This shows that g(f) is not
quasicontinuous at the point 0.
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