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ON DETERMINING SETS FOR CERTAIN
GENERALIZATIONS OF CONTINUITY

JOZEF DOBOS

Introduction

Let X, Y be sets. Let F, , be a class of functions f: X - Y. Aset D < X is
called a determining set for Fy , if each two members of F, , which agree on this
set must agree on all of X. Denote by 2(Fy y) the family of all determining sets
for Fy y.

For the basic properties of determining sets see [1]. A survey of results of
determining sets for derivatives is in [2].

The purpose of this paper is to investigate determining sets for certain classes
of functions (quasi-continuous functions and somewhat continuous functions).
We show that from this point of view is sufficient to research for each such class
its subclass of characteristic functions of sets, and on this account we give a
complete description of determining sets for each such class.

Let X, Y be two topological spaces. The function f: X — Y is said to be
quasi-continuous at the point x;e X if for each neighbourhood U(x,) of the
point x,(in X) and each neighbourhood V(f{(x)) of the point f(x,) (in ) there
exists @ nonempty open set U < U(x,) such that f(U) < V(f(x,)). The function
fis said to be quasi-continuous on X if it is quasi-continuous at each point x € X.
(See [5] and [12].)

The function f: X — Y is said to be somewhat continuous if for each set
V < Y open in Y such that /~'(V) # 0 there exists a nonempty open set U = X
so that U <f (V). (See [4].)

In the sequel 0, , and S, , denote the sets of all functions f: X — Y which
are quasi-continuous on X and somewhat continuous, respectively.

Lete, teY, e # 1. If A be a subset of X, then the characteristic function of
A is the function ¥ X — Y,

e forxeX— A,
t for xeA.

(iH(x) = {

Denote by x%'y the class of all characteristic functions of the form 4" X - Y.
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We assume throughout this paper that the set Y has at least two elements.

1. Preliminaries

1.1. Definition. Let A be a subset of a topological space X. The set A is regular
open if A = IntCl A (see [11]).

[.2. Remarks. 1. Observe that for each open subsct G of a topological
space X we have C/ G = Cl Int Cl G.

2. If A, B are regular open subsets of X, then 4 n B is regular open.

3. If H is an open subset of X, then Int C/ H is regular open.

1.3. Definition. Let A be a subset of a topological space X. The set A is
semi-open if there exists an open set G in X such that G < A < Cl G (sce [7)).

1.4. Lemma. The set A < X is semi-open if and only if A < Cl Int A4 (see [7]).

1.5. Lemma. Let A be a semi-open subset of X. If Int A <« B<Cl A, then Bis
semi-open (see [7]).

1.6. Lemma. Let S be an open subset of X. Then S is regular open if and only
if X — S is semi-open.

1.7. Definition. A function f: X — Y is said to be semi-continuous if f~'(¥) is
a semi-open set (in X) for every open subset 1" of Y. (See [7].)

1.8. Lemma. A function f= X = Y is semi-continuous if and only if f is quasi-

-continuous on X. (Sce [8].)

1.9. Definition. 4 space X is said to be hyperconnected if every nonempty open
set is dense in X. (See [9].)

1.10. Lemma. Let X, Y be topological spaces. Then X is hyperconnected if and
only if each somewhat continuous function f. X = Y is constant on X. (See [3].)

1.11. Definition. A space X is called a Urysohn space if for every pair of distinct
points x and v in X there exist open sets U and V such that xe U, veV, and
ClUnClV =0.

1.12. Definition. A topological space X is said to be extremally disconnected if
the closure of every open set in X is open in X. (See [10].)
2. Determining sets for the class of quasi-continuous

functions

The following theorem shows that Z(Qy ,) = 2(x%'yn Q, ) and gives a
characterization of the family Z(Qy ,).
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2.1. Theorem. Let X be a topological and Y a Urysohn space. Lete, te Y, e # t.
Let A be a nonempty subset of X. Then the following statements are equivalent:

(1) AeZ(Qy v
(2) AeD(Xily 0 Qx. )

(3) foreachL < K< X, # K — L c X — A, some of the following sets is not
semi-open: K, L, X — K, X — L.
Proof. That (1) implies (2) is obvious.

(2) = (3): Deny. Suppose that there exist sets L < K< X, @ # K — LcX—A,
such that the sets K, L, X — K, X — L, are semi-open. Put f = x¢‘and g = x;".
It is not difficult to verify that f, g are semi-continuous functions which agree on
the set A such that f# g. Thus A¢2(xx'y N Qv y)-

(3) = (1): By contradiction. Suppose that there exist functions f, g€ Qy, wf # &,
such that f(x) = g(x) for each xe A. Choose a€ X such that

4 fla) # g(a).
First we shall prove that for each nonempty open set G in X we have
(5) if G is regular open, then A N G # 0.

Deny. Suppose that G = X — A. Putting in (3) K= G, L = (), we obtain that
X — G is not semi-open. Therefore by Lemma 1.6 the set G is not regular open.
Choose U and V open neighbourhoods of the points f(a) and g(a). respectively,
such that

(6) ClUnClV =90.
Put
W = Int Cl Int f~'(U) nInt Cl Int g~ (V).
We shall prove that
(7) W=0.

Let we W. Let H be a neighbourhood of the point f(w). Since f is quasi-
continuous at the point w. there exists a nonempty open set S < W such that
f(S) < /{. Snce S 15 nonempty, open, and S < Cl Int f~'(U), we obtain
S Int f7(U) # 9. Choose a point s in this intersection. Then f(s)e H, f(s)e U,
hence H n U # (. This shows that each neighbourhood of f(w) intersects U, i.e.
f(w)eCl U. Analogously, we have g(w)e C/ V. By (6) we obtain f(iw) # g(w),
hence we X — A. This shows that W < X — A. Since the set W is regular open,
by (5) we have W = 0.

Now, we shall prove that
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(8) aeCl Int f~\(U).

Since f is semi-continuous, the set f~'(U) is semi-open. Then by 1.4 we have
aef~'(U) < ClInt f~'(1).

Analogously, we obtain
(%) aeCl Int g='(}).
Put

E = Int Cl Int f~'(0).

Now, we shall prove that
(10) a¢ E.

By contradiction. Suppose thai ¢€ E. By (9) we have that each neighbourhood
of aintersects the set Int g™ '(V), hence § # En Int g7 '(V) = W. This is contrary
to (7).

Putting in (3) K = Eu{d}, L = E, we obtain that some of the following sets is
not semi-open: Ful{d}, E, X — (Evu{a}), X — E. The proof will be complete
when we show that this is not true. The set E is open. By (8) we have

(11) aeClInt f-'(U) = Cl E,

hence E < Eu {a} c Cl E. Thus the set £ U {a} is semi-open. Since E is regular
open, by (10) and 1.6 the set X — E is semi-open. Put

Z = Int(X — E).

By (11) we obtain aeCl E= X — Z, hence Z < X — {a}.

Since by 1.2 we have Zc (X —E)n(X —{d)) =X —(Eu{d) c X — E=
=Cl(X = ClIntf"'(U)) = Cl(X = C1 E) = Cl Z, the set X — (E U {a}) is semi-
open.

The proof is complete.

2.2. Theorem. Let X be a T\-space, which has at least two elements. Let Y be

a Urysohn space. Let there exists for each accumulation point a€ X a regular open
set A < X such that aeCl A — A. Then 7(Qy y) = {X).

Proof. Let «e X. We shall prove that the set X — {a} is not determining
for the class Qy . Suppose that « is an accumulation point of X (the opposite
case is trivial). By the assumption there exists a regular open set A < X such that
aeCl A — A.Choose e, te Ysuch thate # r. Put /= x50, g = ' Thenf# g
and f(x) = g(x) for cach xe X — {a}. It is not difficult to verify (by 1.4 and 1.6)
that f, g€ Q.. Thus X — {a}¢ Z(Q . ).
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2.3. Theorem. Let X be a first countable Hausdorff space. Let Y be a Urysohn
space. Then Z(Qy ) = {X}.

Proof. By 2.2. Let ae X be an accumulation point of the set X. It is not
difficult to verify that there exists a countable base {U,}’_, at the point « such
that for each positive integer n we have

(12) U

7

1+ | = Un*
(13) Int(U,—U,,))#0.

For each positive integer n put Z, = Int(U, — U, , ,)- Put

B=\]J Zy, A=IntCIB.

k=1
Since B is open, by 1.2 the set A4 is regular open. It is easy to prove that

(14) Z, ,cX—Bn=1213,.).

We shall prove that
(15) aeCl A.

Let U be a neighbourhood of a. Let k be a positive integer such that U,, < U.
By (13) we have § # Z,, « Z,, n U,, € Bn U. This shows that each neighbour-
hood of a intersects the set B, i.e. aeCl B=Cl A.

We shall prove that

(16) a¢ A.

By contradiction. Suppose that ae 4. Then A is a neighbourhood of a. Thus
there exists a positive integer m such that U,, < A. By (13) we have
0#2,,,,cU,, <A By (14 we obtan Z,,,, <X — B, hence
2y, 1€ A—=BcClB. Then9 # Z,,, ., = Int(Cl B— B) =0, a contradiction.
By (15) and (16) we obtain ae Cl A — A.

The proof is complete.

2.4. Lemma. Let X be an extremally disconnected space and Y a regular space.
If a function f- X — Y is quasi-continuous on X, then it is continuous on X. (See
[6; Theorem 2] and [10; Theorem 3.2].)

The following example shows that the assumption “first countable’ in Theo-
rem 2.3 cannot be omitted.

2.5. Example. Let X be the Cech-Stone compactification of the set of all
positive integer numbers. Let Y be the real line with the Euclidean topology. Let
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A be a dense subset of X such that 4 # X. By 2.4 the set 4 is determining for
the class Q. y. Thus 2(Q . ,) # {X}.

The following example shows that the assumption “"HausdorfT space” in
Theorem 2.3 cannot be replaced by the assumption “T,-space™.

2.6. Example. Let X be an infinite countable set with the cofinite topol-
ogy. Let Y be the set of all real numbers with the Euclidean topology. Let ae X.
Since X is hyperconnected, by 1.10 the set {a} is determining for the class Qy ,.
Thus Z(Q,.v) # {X}.

3. Determining sets for the class of somewhat continuous functions

The following theorem shows that £(S, ,) = 2(x%'y~ S, ,) and gives a
characterization of the family Z(S, ,).

3.1. Theorem. Let X be a topological and Y a Urysohn space. Lete, te Y, e # t.
Let A be a nonempty subset of X. Then the following statements are equivalent:

(1) AeZ(S, y),
(i1) A€D(Xily N Sx.v),
(i) foreachL c K< X,0 # K— L < X — A, some of the following assertions
holds:
(18) Int K =0,
(19) L is dense in X,
(20) Int L=0and L # 0,
(21) K is dense in X and K # X.

Proof. That (i) implies (ii) is obvious.
(1) = (iii): Deny. Suppose that there exist L ¢ K « X such that

P#FK—-—LcX— A,
Int K #0,
L 1s not dense in X,
Int L =@ implies L = ¢,
K is dense in X implies K = X.

Put f= x¢" and g = x;". It is not difficult to verify that f, g are somewhat
continuous functions which agree on the set A such that f#g. Thus
A¢D(X5ly 0 Sy v).

(1i1) = (i): By contradiction. Suppose that (iii) holds and there exist two different
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functions f, ge S, , which agreec on the set A. Choose a, be .Y such that

(22) f(a) = g(a) and f(b) # g(b).
First we shall prove that for each nonempty open set G < X we have
(23) if G« X — A, then G is dense in X.

Let G be a nonempty open subset of X such that G < Y — .{. Putting in (iii)
K =G and L =, we obtain that ¢ is dense in X.
Now, we shall prove that for each nonempty open subset £ 1n X we have

(24) E < Cl{b} implies En A # 0.

By contradiction. Suppose that there exists a nonempty open subset E of X such
that £ < Cl{b} and En A = 0. Let D be an open neighbourhood of f(«) in Y.
Since f€ Sy y, we have Int (D) # 0. By (23) the set E is dense in X. therefore
0# Enlntf (D) = Cl{b}n Inff~(D). Thus belnt f~(D). Hence f(b)eD.
This shows that the point f(b) lies in every ncighbourhood of f(a). Thus
f(a) = f(b). Analogously, we obtain g(a) = g(b). This is contrury to (22). Choose
{/and V open neighbourhoods of the points f(b) and g(b), respectively, such that

(25) ClUnClV=0.
Since f, ge Sy y, we have

(26) Intf~'(U) # 9 # Int g~ (V).
Put

W=Intf "(U)nIntg='(M).
It 1s easy to prove that

(27) WeX—A

Now, we shall prove that
(28) W =0.

By contradiction. Suppose that H” # (. Let /{ be an open neighbourhood of the
point flu). Since f€ S, ,, we have Int '/ 5 0. By (27) and (23) the set W' is
densein X, therefore we obtain @ # W v Int f (/1) < f (U~ 11). Thus we have
U 1 #£ 0. This shows that each neighbourhood of f(a) intersects the set (. ie.
Ja@)e Cl U. Analogously, we obtain g(«)eCl 1. Then by (25) we have
f(a) # g(a). This is contrary to (22).

In the following we distinguish three casces.

a.) Suppose that Int /~'(U) — Cl{b} = § = Int g~'(V) — Cl{b}. Since the point
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b lies in every nonempty open subset of Cl{b}, by (26) we obtain be Int £~'(U)
and beInt g~'(V). This is contrary to (28). This shows that the case a.) is not
true.

b.) Suppose that Int f~'(U) — CI{b} # §. Putting in (iii) K = Int f~'(U) U {b},
L = Int f~'(U) — {b}, we obtain that

(29) Int f~'(U) U {b} is dense in X.

Then by (28) we have @ # (Int f~'(U) U {b}) nInt g~' (V) = {b} N Int g~ (V).
Thus

(30) belnt g='(V).

We distinguish two cases. First, suppose that Int g='(V) — Cl{b} = §. Then by
(26) and (24) we have Int g='(V) n 4 # §. Choose a point = in this intersection.
Then f(z) = g(z)e V. Hence f~'(V) # 0. Since f€ S, ,, we have Int /~'(V) # 0.
Then by (29) we obtain 9 # (Int /() u{b}) nIntf (1) < (V) f~'(V),
which contradicts (25). Now, suppose that Int g '(V) — Cl{b} # 0. Analogously
as for (30) we obtain bef~'(U). Thus be W. This is contrary to (28). This shows
that the case b.) is not true.

c.) Suppose that Int g='(V) — C1{b} # (. Analogously as for b.) we obtain that
the case c.) is not true.

The proof is complete.

The following theorem is obvious.

3.2. Theorem. Let X be a Hausdorff space and Y a Urysohn space. Then
Z (Sx. y) = {X}.

Example 2.6 shows that the assumption “Hausdorff space™ in Theorem 3.2
cannot be replaced by the assumption *“T,-space™.

Question. Can the assumption “Urysohn space’ in Theorems 2.1 and 3.1 be
replaced by the assumption “Hausdorff space’’?

The author is very much indebted to Professor T. Salat for many helpful
remarks and suggestions offered during the preparation of this paper.
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Ob OMNPEAEJIAIOMIMUX MHOXECTBAX IJ18 HEKOTOPBLIX OBOBIEHHH
HEIPEPBIBHOCTH

Jozef Dobos

Pesome

B HacTosiel paboTc H3yuaeM CHCTCMBbI ONPCICIAIOMIMX MHOXECTB 18 KI4CCOB KBa3MHE-
NpepbiBHBIX GYHKUMHA W HEMHOKHO-HENpepbIBHBIX (QYHKUMIA. [TOKa3bIBACM, YTO C TOYKH 3PCHHS
CHCTEM ONPE.ICTIAFONIHX MHOXECTB JLISt ITHX KJIACCOB (PYHKUMIA AOCTATOUYHO HCCNEAOBATL FOILKO
MX TNOJKJIACCHI, JICMCHTAMM KOTOPBIX SBJSIOTCS XapaK ICPHCTHYCCKUE QYHKLIMHM MHOKECTB. 4 Ha
OCHOBAHMHU 3TOTO AACM XdPAKTEPHIALIHIO ITHX CHCTEM,
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