Math. Slovaca 37, 1987, No. 1, 3—7

ON STATIONARY SETS FOR CERTAIN
GENERALIZATIONS OF CONTINUITY

JOZEF DOBOS

Let X, Y be two topological spaces. Let # be a class of functions f: X' — Y.
A subset 4 of X with the property that whenever fe # is constant on A, then
f must be constant on X, is said to be a stationary set for #. Observe that if
F, < &%,, then each stationary set for &, is also a stationary set for #,. (See [2].
p- 199.)

For the basic properties of stationary sets see [1]. A survey of results of
stationary sets for derivatives is in [3].

In the present paper we give a complete characterization of stationary sets for
certain generalizations of continuity (for somewhat continuous functions and
quasi-continuous functions).

Let X, Y be two topological spaces. A function f: X — Y is said to be
somewhat continuous if for each set ¥ = Y open in Y such thatf (V) # 0 there
exists a nonempty open set U < X so that U < f~(V) (see [3)).

A function > X — Y is said to be quasi-continuous at the point x,€ X if for
cach neighbourhood U(x,) of the point x, (in X) and each neighbourhood
I(f(x,)) of the point f(x,) (in Y) there exists a nonempty open set U < U(x,)
such that f(U) = V(f(x,))- A function f: X — Y is said to be quasi-continuous on
X if it is quasi-continuous at each point x€ X. (See [6] and [9].)

In the sequel S(X, Y) and Q(X, Y) denote the sets of all functions f: X = Y
which are somewhat continuous and quasicontinuous on X, respectively.

In the paper it is supposed that Y is a Hausdorff space which has at least two
clements.

1. Stationary sets for the class of somewhat continuous functions

In the following theorem we give a characterization of the family of all
stationary sets tor the class of somewhat continuous functions.

1.1. Theorem. Let A be a nonempty subset of a topological space X. Then A
is a stationary set for the class S(X, Y) if and only if every nonempty open subset
of the set X — Cl A is dense in X.



Proof. Sufficiency. By contradiction. Let every nonempty open subset of
the set X — Cl A4 be dense in X. Let fe S(X, Y), f(x) = a for xe A4, f(b) # g for
some be X — A. Choose open disjoint neighbourhoods U and V of the points
a and f(b), respectively. Then G = Int f~'(U) and H = Int /~'(V) are nonempty
and disjoint. Since A < X — H and H is open, we have /{ € X — Cl A. Then, by
the assumption, H is dense in X. Therefore G n H # 0, a contradiction.

Necessity. Deny. Suppose that there exists a nonempty open set
H < X — Cl A which is not dense in X. Choose u, v € Y such that « # v. Define
the function f: X’ — Y as follows

_Ju for xe W,
Jx) = {v otherwise.

Then f is somewhat continuous function which is constant on A, but fis not
constant on X. Hence the set A4 is not stationary for the class S(X, Y). The proof
IS complete.

1.2. Remark. Let X be a topological space. Then every dense subset of X is
a stationary set for the class S(X, Y).

1.3. Definition. An open almost-base for a space X is a family &/ of open
subsets of X such that every nonempty open subset of X contains some nonemp-
ty Aes/ (see [4]).

1.4. Theorem. Let X be a topological space which is not antidiscrete. Then
every stationary set for the class S(X, Y) is dense in X if und only if the family of
all open subsets of X which are not dense in X is an almost-base for X.

Proof. Sufficiency. Deny. Let A be a stationary set for the class S(X, Y)
which is not dense in X. Evidently X — Cl 4 is a nonempty open set and by
Theorem 1.1 we have that every nonempty open subset of the set X — Cl 4 is
dense in X.

Necessity. Deny. Suppose that there exists a nonempty open set U in X such
that every nonempty open subset of this sct is dense in X. Let V be a nonempty
open proper subset of X. Since U is dense in X, the set W = U n V' is nonempty.
By Theorem 1.1 the set X — W is stationary for the class S(X, Y). But X — W
1s not dense in X. The proof is complete.

By. 1.4 we have the following theorem.

1.5. Theorem. Let A be a subset of a Hausdorff space X. Then A is a stationary
set for the class S(X, Y) if and only if A is dense in X.
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1.6. Definition. A space X is said to be hyperconnected if every nonempty
open set 1s dense in X (see [7]).

1.7. Theorem. Let X be a topological space. Then X is hyperconnected if and
only if each somewhat continuous function f- X — Y is constant on X.

Proof. It is sufficient to take into account the following rcason. If X is
not hyperconnected, then there is a set A < X such that Int A # ( #
# Int (X — A).

1.8. Corollary. Let X be a hvperconnected space. Then every nonempty subset
of X is a stationary set for the class S(X, Y).

The following example shows that the assumption ““Hausdorff space™ in the
Theorem 1.5 cannot be replaced by the assumption ““T,-space™.

1.9. Example. Let X be an infinite countably set with the cofinite topology.
Evidently X 1s a T,-spuace. Since X is hyperconnected, by 1.8 each nonempty
finite set is a stationary set for the class S(X, Y), but it is not dense in X.

2. Stationary sets for the class of quasi-continuous functions

2.1. Definition. Let A be a subset of a topological space X. The set A is
regular open if 4 = Int Cl 4 (see [8]).

In the following theorem we give a characterization of the family of all
stationary sets for the class of quasi-continuous functions.

2.2. Theorem. Let A be a nonempty subset of a topological space X. Then A
is a stationary set for the class Q(X, Y) if and only if the set X — Cl A has not
a nonempty regular open subset.

Proof. Sufficiency. By contradiction. Suppose that the set X — Cl 4 has
not a nonempty regular open subset. Let fe Q(X. Y), f(x) = aforxe A, f(b) # a
forsome be X — A. Choose open disjoint neighbourhoods U and ¥ of the points
a and f(b), respectively. Since f is quasi-continuous at the point b, there exists
a nonempty open set W in X such that f{W) < V. Since Int Cl W is nonempty
regular open, by the assumption we have 4 N Int Cl W 3 §. Choose a point ¢ in
this intersection. Since f is quasi-continuous at the point ¢,
there exists a nonempty open set G < Int Cl W such that f(G) < U. Since
GocClW,wehave GA W # 0. Thus § # fIGA W) < Un V = §, a contradic-
tion.

Necessity. Deny. Suppose that the set X — Cl 4 has a nonempty regular open

subset W. Choose u, ve Y such that u 5 v. Define the function f: X — Y as
follows



.~ _ Ju for xe W,
/) { v otherwise.
It is not difficult to verify that fe Q(X, Y). Evidently fis constant on A4, but it
is not constant on X. The proof is complete.
In the following we give some corollaries of this theorem.

2.3. Theorem. Let X be a topological space. Then every stationary set for the
class Q(X. Y) is dense in X if and only if the family of all regular open sets is an
almost-base for X.

Proof. Sufficiency. Let 4 be a stationary set for the class Q(X, Y). Then
by Theorem 2.2 the set X — Cl A has not a nonempty regular open subset.
Hence by hypothesis we have X' — Cl 4 = 0. Thus A is dense in X",

Necessity. Let U be a nonempty open proper subset of X. Evidently the set
X — Uisnotdense in X, then by hypothesis X' — U is not stationary for the class
Q(X, Y). By Theorem 2.2 we have that the set U= X — CI(X — U) has a
nonempty regular open subset. Hence the desired property is ensured.

2.4. Theorem. Let A be a subset of a regular space X. Then A is a stationary
set for the class Q(X. Y) if and only if A is dense in X.

Proof. Let U be a nonempty open set. Take an arbitrary ue U. Since X is
regular, there exists an open set V such that wel < ClJ < U. Put
W = Int Cl V. Then H’is a nonempty regular open set such that W < U. By 2.3
every stationary set for Q(X, Y) is dense. The converse is trivial.

The following example shows that the assumption “‘regular space™ in Theo-
rem 2.4 cannot be replaced by the assumption ““Hausdor(Y space™.

2.5. Example. Let X be the set of all real numbers. Denote by D the set of all
rational numbers. Define a topology 7 on X generated from the Euclidean
topology on R by the addition of all sets of the form D n U where U is an open
set in the Euclidean topology on R. By Theorem 2.3 there exists a stationary set
for the class Q(X, Y) which is not dense in X, but X is a HausdorfT space.

The following example shows that there exists a Hausdorff space X such that
the statement of Theorem 2.4 is true. but X is not regular.

2.6. Example. Lct X be the set of all real numbersand A ={1.n;n=-1,2,3,...}.
Define a topology 7 on X by letting Gerif G=U — B where Bc 4 and U
is an open set in the Euclidean topology on R. Then by Theorem 2.3 the desired
property 1s ensured. But X" is a HausdorfT space which is not regular.
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OB CTALIMOHAPHbBIX MHOXECTBAX JJ11 HEKOTOPBIX OBOBUIEHNH
HEITPEPBIBHOCTH

Jozef Dobo§

Pe3ioMe

B nacrosimel pabore Mbl npeanaraeM XapakTepH3aLMIO CTALMOHAPHLIX MHOXECTB AIs

HCKOTOPBLIX 0OOOUICHHI HENpepbIBHOCTH (/U KIACCOB HCMHOXKO-HENpPEPLIBHbIX (GYyHKUMI M
KBA3HHEIPCPbIBHbIX (PYHKUHMH).



