ON THE SET OF POINTS OF DISCONTINUITY FOR FUNCTIONS WITH CLOSED GRAPHS

JOZEF DOBOŠ, KOŠICC (Received July 15, 1983)

For two topological spaces X and Y and any function $f: X \to Y$ the subset $\{(x, f(x)); x \in X\}$ of the space $X \times Y$ (with Tychonoff's topology) is called the graph of f and is denoted by G(f). We denote by $C_f(D_f)$ the set of all such points at which the function f defined on X is continuous (discontinuous).

I. Baggs [1] dealt with the set of points of discontinuity of functions with closed graphs. In this paper we shall generalize some results of the paper [1].

1. PRELIMINARIES

First we recall definitions and some basic properties.

Proposition A. Let a function $f: X \to Y$ have a closed graph. If K is a compact subset of Y then $f^{-1}(K)$ is a closed subset of X. (See [2; Theorem 3.6].) This proposition has the following corollary.

Proposition B. Let a function $f: X \to Y$ have a closed graph. Then $f^{-1}(y)$ is a closed subset of X for each $y \in Y$. (See [7; Theorem 1].)

Proposition C. Let $f: X \to Y$ be any function where Y is a locally compact Hausdorff space. If for each compact $K \subset Y$, $f^{-1}(K)$ is closed, then G(f) is closed. (See [9; Theorem 6].)

Definition 1. Let X and Y be topological spaces, let $f: X \to Y$ be a function and let $p \in X$. Then f is said to be *c-continuous at p* provided the following holds: if U is an open subset of Y containing f(p) such that Y - U is compact, then there is an open subset V of X containing p such that $f(V) \subset U$. The function f is said to be *c-continuous* $(on\ X)$ provided f is c-continuous at each point of X. (See [3; Definition 1].)

Proposition D. Let $f: X \to Y$ be any function where Y is Hausdorff. Then the following statements are equivalent:

- (1) f is e-continuous, and
- (2) if K is a compact subset of Y, then $f^{-1}(K)$ is a closed subset of X. (See [3; Theorem 1].)

Corollary 1. Let $f: X \to Y$ be any function where Y is a locally compact Hausdorff space. Then f is c-continuous if and only if G(f) is closed.

Definition 2. A function $f: X \to Y$ is locally bounded at $x_0 \in X$ if and only if there exists a compact subset K of Y such that $x_0 \in \text{Int}(f^{-1}(K))$. We denote by B_f the set of all such points at which the function f is locally bounded.

Lemma A. Let $f: X \to Y$ be given. Then G(f) is closed if and only if for each $x \in X$ and $y \in Y$, where $y \neq f(x)$, there exist open sets U and V containing x and y, respectively, such that $f(U) \cap V = \emptyset$. (See [8; Lemma].)

Theorem 1. Let $f: X \to Y$ be given. If G(f) is closed, then

$$B_f \subset C_f$$
.

Proof. We may assume that Y has at least two elements (in the opposite case we evidently have $B_f = C_f$). Let the set G(f) be closed. Let $x_0 \in B_f$. By Definition 2 there exists a compact set K (in Y) such that $x_0 \in \text{Int } (f^{-1}(K))$. Let V be an open neighbourhood of the point $f(x_0)$. Since K - V is compact and G(f) is closed, $f^{-1}(K - V)$ is closed by Proposition A. Put

$$U = Int (f^{-1}(K)) - f^{-1}(K - V).$$

Evidently U is an open neighbourhood of the point x_0 . We shall prove that $f(U) \subset V$. Let $x \in U$. Since $f(x) \in K$ and $f(x) \notin K - V$, evidently $f(x) \in V$. Hence $x_0 \in C_f$.

Corollary 2. Let $f: X \to Y$ be any function where Y is a locally compact space. If G(f) is closed, then $B_f = C_f$.

The converse to Corollary 2 is not necessarily true as the following example shows.

Example 1. Let X = Y = R (where R denotes the set of all real numbers) with the usual topology. Define a function $f: X \to Y$ as follows:

$$f(x) = \begin{cases} \frac{1}{x} \sin \frac{1}{x} & \text{for } x \neq 0, \\ 0 & \text{for } x = 0. \end{cases}$$

Then G(f) is not closed, but Y is locally compact and $B_f = C_f$.

Lemma 1. Let the function $f: X \to Y$ have a closed graph. If K is a compact subset of Y then $f^{-1}(K) - B_f$ is nowhere dense in X.

Proof. Let K be a compact subset of Y. Put

$$A=f^{-1}(K)-B_f.$$

By Definition 2 it is easy to see that B_f is open. By Proposition A the set $f^{-1}(K)$ is closed. Therefore A is closed. Now we shall prove that Int(A) = 0. Let $x \in Int(A)$. Then A is a neihbourhood of the point x such that $f(A) \subset K$. Since K is compact by Definition 2 we have $x \in B_f$. This leads to a contradiction because $x \in A \subset X - B_f$. Therefore A is nowhere dense in X.

Theorem 2. Let $f: X \to Y$ be any function where Y is a σ -compact space (i.e. Y is the countable union of compact sets). If G(f) is closed, then $X - B_f$ is closed and of the first category (in X).

Proof. By the assumption, $Y = \bigcup_{n=1}^{\infty} K_n$, where each K_n is compact. Let $n \in N$ (where N denotes the set of all positive integers). Put

$$A_n = f^{-1}(K_n) - B_f.$$

By Lemma 1 the set A_n is nowhere dense in X. Hence $X - B_f = \bigcup_{n=1}^{\infty} A_n$ is of the first category in X.

2. REAL FUNCTIONS WITH CLOSED GRAPHS

Let X be a topological space. Denote by U(X) the class of all real functions defined on X with closed graphs.

From Corollary 2, Lemma 1, Proposition B and Theorem 2 we obtain the following three theorems.

Theorem 3. Let $f \in U(X)$. Then the set D_f is closed and of the first category (in X).

Theorem 4. Let $f \in U(X)$. Then $D_f \cap f^{-1}(0)$ is closed and nowhere dense (in X).

Theorem A. Let X be a T_2 Baire space. If $f: X \to R^n$ (R^n – the Euclidean n-space) has a closed graph, then D_f is closed and nowhere dense in X. (See [1], and for metric spaces see [5; Theorems 4 and 5].)

Theorem B. A set $F \subset R$ is closed and nowhere dense if and only if there exists a function $f: R \to R$ such that f has a closed graph and $D_f = F$. (See [1].)

Theorem 5. Let F be a closed, G_{δ} and nowhere dense subset of a normal topological space X. Let $u: X \to \langle 0, 1 \rangle$ be a continuous function such that $u^{-1}(0) = F$. Define a function $g: X \to R$ as follows:

$$g(x) = \begin{cases} 1/u(x) & for & x \in X - F, \\ 0 & for & x \in F. \end{cases}$$

Then g has a closed graph and $D_q = F$.

Proof. We show that the graph of g is closed. Let $\{(x_{\sigma}, g(x_{\alpha}))\}_{\alpha \in A}$ be a convergent net of points of the graph of g, i.e. there exist x_0 and y_0 such that $(x_{\alpha}, g(x_{\alpha})) \to (x_0, y_0) \in X \times R$. We distinguish two cases.

a. Let there exist α_0 such that for every $\alpha > \alpha_0$ we have $x_{\alpha} \in F$. Since $x_{\alpha} \to x_0$ and F is closed, we obtain $x_0 \in F$. Hence $g(x_0) = 0 = y_0$.

b. For each α let there exist $\beta > \alpha$ such that $x_{\beta} \notin F$. It follows from the definition of g that $g(x) \geq 1$ whenever $x \in X - F$. The convergence of the net $\{g(x_{\alpha})\}_{\alpha \in A}$ implies that there is α_0 such that for every $\alpha > \alpha_0$ we have $x_{\alpha} \in X - F$. Since u is continuous at the point x_0 and $g(x_{\alpha}) \to y_0$, we obtain $x_0 \in X - F$. Since g is continuous on the set X - F, it is not difficult to verify that $g(x_{\alpha}) \to g(x_0)$. Hence $g(x_0) = y_0$.

Finally, we show that $D_q = F$. Evidently g is continuous on the set X - F. Let $x \in F$. Because the set F is nowhere dense, we have $\omega_g(x) \ge 1$ for the oscillation of g in x. Hence $x \in D_g$. The following example shows that there exists a metric space X and a function $f \in U(X)$ such that D_f is not nowhere dense.

Example 2. Let $X = \{x_1, x_2, ...\}$ be a countably dense subset of R. Define a function $f: X \to R$ as follows:

$$f(x_n) = n \quad (n = 1, 2, \ldots).$$

Then f has a closed graph, but $D_f = X$ is not nowhere dense in X.

Proposition 1. Let X be a topological space. Let $f \in U(X)$. Then $|f| \in U(X)$.

Proof. Let $x_0 \in X$. Let $y \neq |f(x_0)|$. First suppose that $y \geq 0$. Since $y \neq f(x_0)$, by Lemma A there exist $\delta_1 > 0$ and a neighbourhood U_1 of the point x_0 such that

$$f(U_1) \cap (y - \delta_1, y + \delta_1) = \emptyset$$
.

Since $-y \neq f(x_0)$, by Lemma A there exist $\delta_2 > 0$ and neighbourhood U_2 of the point x_0 such that

$$f(U_2) \cap (-y - \delta_2, -y + \delta_2) = \emptyset.$$

Put

$$U=U_1\cap U_2\,,$$

$$\delta = \min(\delta_1, \delta_2),$$

$$V = (y - \delta, y + \delta).$$

Let $x \in U$. If $f(x) \ge 0$, since $f(x) \notin (y - \delta_1, y + \delta_1)$, we have $|f(x)| - y| = |f(x) - y| \ge \delta_1 \ge \delta$. Therefore $|f(x)| \notin V$. If f(x) < 0, then $f(x) \notin (-y - \delta_2, -y + \delta_2)$, hence $|y - |f(x)|| = |y + f(x)| \ge \delta_2 \ge \delta$. Therefore $|f(x)| \notin V$. In the case y < 0 put U = X, $V = (-\infty; 0)$. Then by Lemma A the function f has a closed graph.

Proposition 2. Let X be a topological space. Let α be a real number. Let $f \in U(X)$. Then α . $f \in U(X)$.

Proof. It is obvious that for $\alpha = 0$ we have $\alpha \cdot f \in U(X)$. Suppose that $\alpha \neq 0$. Let $x_0 \in X$. Let K be a compact subset of R such that $\alpha \cdot f(x_0) \notin K$. Since K is closed, there exists $\varepsilon > 0$ such that

(3)
$$(\alpha . f(x_0) - \varepsilon, \quad \alpha . f(x_0) + \varepsilon) \cap K = 0.$$

Let k > 0 be a bound of the set K (i.e., $K \subset \langle -k, k \rangle$). Put

$$h = \max(k, k_1 | \alpha |),$$

$$K_1 = \langle -h, h \rangle - (f(x_0) - \varepsilon | \alpha |, f(x_0) + \varepsilon | \alpha |).$$

Since $f(x_0) \notin K_1$ and K_1 is compact, there exists a neighbourhod U of the point x_0 such that

$$(4) f(U) \cap K_1 = \emptyset.$$

Let $x \in U$. If $\alpha \cdot f(x) \notin \langle -k, k \rangle$, evidently $\alpha \cdot f(x) \notin K$. Let $\alpha \cdot f(x) \in \langle -k, k \rangle$. Then $f(x) \in \langle -h, h \rangle$, therefore by (4) we have $f(x) \in (f(x_0) - \varepsilon/|\alpha|, f(x_0) + \varepsilon/|\alpha|)$. Thus $|\alpha \cdot f(x) - \alpha \cdot f(x_0)| = |\alpha| \cdot |f(x) - f(x_0)| < |\alpha| \cdot \varepsilon/|\alpha| = \varepsilon$, hence by (3) we have $\alpha \cdot f(x) \notin K$. Then Corollary 1 yields $\alpha \cdot f \in U(X)$.

Remark 1. Propositions 1 and 2 are proved in the paper [6] for X a metric space. It is known that the class U(X) is not closed with respect to addition (see [6; Example 3]). We prove that U(X) is closed with respect to addition of nonnegative functions.

Theorem 6. Let X be a topological space. Let $f, g \in U(X)$ be nonnegative functions. Then $f + g \in U(X)$.

Proof. Let $x_0 \in X$. Let K be a compact subset of R such that $f(x_0) + g(x_0) \notin K$. The closedness of the set K implies that there exists $\varepsilon > 0$ such that

(5)
$$(f(x_0) + g(x_0) - \varepsilon, \quad f(x_0) + g(x_0) + \varepsilon) \cap K = 0.$$

Let k > 0 be a bound of the set K (i.e. $K \subset \langle -k, k \rangle$). Put

$$K_1 = \langle 0, k \rangle - (f(x_0) - \varepsilon_1 2, f(x_0) + \varepsilon_1' 2),$$

$$K_2 = \langle 0, k \rangle - (g(x_0) - \varepsilon/2, g(x_0) + \varepsilon/2).$$

Since $f \in U(X)$, by Corollary 1 there exists a neighbourhood U_1 of the point x_0 such that

$$f(U_1) \cap K_1 = \emptyset.$$

Since $g \in U(X)$, by Corollary 1 there exists a neighbourhood U_2 of the point x_0 such that

$$g(U_2) \cap K_2 = \emptyset.$$

Put

$$U=U_1\cap U_2.$$

Let $x \in U$. If f(x) + g(x) > k, evidently $f(x) + g(x) \notin K$. Let $f(x) + g(x) \in \langle 0, k \rangle$. Since by (6) we have $f(x) \in \langle 0, k \rangle - K_1$, by the definition of K_1 we obtain

(8)
$$f(x) \in (f(x_0) - \varepsilon/2 \ f(x_0) + \varepsilon/2).$$

Since by (7) we have $g(x) \in (0, k) - K_2$, by the definition of K_2 we obtain

(9)
$$g(x) \in (g(x_0) - \varepsilon/2, \ g(x_0) + \varepsilon/2).$$

From (8) and (9) it follows that $|(f(x) + g(x)) - (f(x_0) + g(x_0))| \le |f(x) - f(x_0)| + |g(x) - g(x_0)| < \varepsilon/2 + \varepsilon/2 = \varepsilon$, hence by (5) we have $f(x) + g(x) \notin K$. Therefore $(f + g)(U) \cap K = 0$. By Corollary 1 we obtain $f + g \in U(X)$.

Corollary 3. Let X be a topological space. Let $f, g \in U(X)$. Then $|f| + |g| \in U(X)$.

Definition 3. A topological space X is called *perfectly normal* if and only if it is normal and each closed subset of X is G_{δ} . (See [4], p. 181.)

Theorem 7. Let X be a perfectly normal topological space. Then $A \subset X$ is closed and of the first category in X if and only if there exists a function $f \in U(X)$ such that $D_f = A$.

Proof. Necessity follows from Theorem 3. Sufficiency. Let $A \subset X$ be closed and of the first category in X. Then $A = \bigcup_{n=1}^{\infty} A_n$, where each A_n is a closed nowhere dense subset of X, $A_n \subset A_{n+1}$ (n = 1, 2, ...). Let $g: X \to \langle 0, 1 \rangle$ be a continuous function such that $g^{-1}(0) = A$. Let $g_n: X \to \langle 0, 1 \rangle$ (n = 1, 2, ...) be continuous functions such that for each $n \in N$

(10)
$$g_n^{-1}(0) = A ,$$

(11)
$$g_n(x) \ge g(x)$$
 for each $x \in X$.

The existence of functions g, g_n (n = 1, 2, ...) follows from Urysohn's lemma. For each $n \in \mathbb{N}$ define a function $f_n : X \to R$ as follows:

$$f_n(x) = \begin{cases} 1/g_n(x) & \text{for } x \in X - A_n, \\ 0 & \text{for } x \in A_n. \end{cases}$$

By Theorem 5 we have $f_n \in U(X)$ (n = 1, 2, ...). Consider the series

(12)
$$\sum_{n=1}^{\infty} ((1/2^n) \cdot f_n) .$$

We now show that the series (12) is convergent to some function $f: X \to R$. If $x \in A_m$ for some $m \in N$, then

$$0 \leq \sum_{n=1}^{\infty} ((1/2^n) \cdot f_n(x)) = \sum_{n=1}^{m} ((1/2^n) \cdot f_n(x)) < +\infty.$$

If $x \in X - A$, then

$$0 \leq \sum_{n=1}^{\infty} ((1/2^n) \cdot f_n(x)) = \sum_{n=1}^{\infty} ((1/2^n) \cdot (1/g_n(x))) \leq$$
$$\leq \sum_{n=1}^{\infty} ((1/2^n) \cdot (1/g(x))) = 1/g(x) < +\infty.$$

We now show that $D_f = A$. First we shall prove that $X - A \subset C_f$. Let $b \in X - A$. Since g(b) > 0 and g is continuous at the point b, there exists a neighbourhood U of the point b such that

$$(13) \qquad \forall x \in U : g(x) > g(b)/2.$$

Evidently $U \subset X - A$. Hence by (13) we have for each $x \in U$

$$f_n(x) = 1/g_n(x) \le 1/g(x) < 2/g(b) \quad (n = 1, 2, ...).$$

Therefore the series (12) is uniformly convergent on the set U. Since all functions f_n are continuous on U, the function f is continuous at the point b. Now we show that $A \subset D_f$. Let $a \in A$. Then $a \in A_m$ for some $m \in N$. We shall prove that for each neighbourhood V of the point a and for each $n \in N$ there exists a point $y \in V$ such that f(y) > n. Let V be a neighbourhood of the point a. Let $n \in N$. Since g_m is continuous at the point a, there exists a neighbourhood W of the point a such that

$$\forall x \in W : g_m(x) < 2^{-m}/n.$$

Since A_m is closed and nowhere dense, there exists a point $y \in V \cap W$ such that $y \in X - A_m$. Hence by (14) we have

$$f(y) \ge (1/2^m) \cdot (1/g_m(y)) > n$$
.

Therefore $a \in X - B_f = D_f$.

Now we shall prove that $f \in U(X)$. Let K be a compact subset of R. We now show that $X - f^{-1}(K)$ is open. Let $x_1 \in A_m - f^{-1}(K)$ for some $m \in N$. Put

$$h = \sum_{n=1}^{m} ((1/2^n) \cdot f_n)$$
.

By Theorem 5, Proposition 2 and Theorem 6 we obtain $h \in U(X)$. Since $f(x_1) \notin K$ and K is closed, there exists $\varepsilon > 0$ such that

$$(f(x_1) - \varepsilon, f(x_1) + \varepsilon) \cap K = \emptyset.$$

Let k > 0 be a bound of the set K (i.e. $K \subset \langle -k, k \rangle$). Put

$$K_1 = \langle 0, k \rangle - (f(x_1) - \varepsilon, f(x_1) + \varepsilon).$$

Since $h(x_1) = f(x_1) \notin K_1$, K_1 is compact and $h \in U(X)$, by Proposition A the set $X - h^{-1}(K_1)$ is an open neighbourhood of the point x_1 . Since g_m is continuous at the point x_1 , there exists a neighbourhood U_1 of the point x_1 such that $U_1 \subset X - h^{-1}(K_1)$ and for each $x \in U_1$ we have

$$(15) g_m(x) < 2^{-m}/(f(x_1) + \varepsilon).$$

If $x \in U_1 \cap A_m$, then $f(x) = h(x) \notin K_1$. Therefore $f(x) \notin K$. If $x \in U_1 - A_m$, then by (15) we have

$$h(x) \ge (1/2^m) \cdot f_m(x) = (1/2^m) \cdot (1/g_m(x)) > f(x_1) + \varepsilon$$

Since $h(x) \notin K_1$, we obtain $h(x) \notin \langle 0, k \rangle$. Hence $f(x) \ge h(x) > k$, then $f(x) \notin K$. Therefore the point x_1 has a neighbourhood U_1 such that $U_1 \subset X - f^{-1}(K)$.

Let $x_2 \in (X - A) - f^{-1}(K)$. Since $x_2 \in C_f$, the set

$$U_2 = X - f^{-1}(K) = f^{-1}(R - K)$$

is a neighbourhood of the point x_2 .

Therefore the set $X - f^{-1}(K)$ is open. By Proposition C we have $f \in U(X)$. This theorem has the following corollary.

Theorem C. Let X be a Baire metric space. Then $F \subset X$ is closed and nowhere dense in X if and only if there exists a function $f \in U(X)$ such that $D_f = F$.

The following example shows that the assumption "X is perfectly normal" in Theorem 7 cannot be replaced by the assumption "X is normal".

Example 3. Let $X = \{\omega; \omega \leq \Omega\}$ (where Ω denotes the first uncountable ordinal number) with the order topology. It is well known that X is a normal space, and the set $\{\Omega\}$ is closed and nowhere dense in X but for each $f \in U(X)$ we have $D_f \neq \{\Omega\}$. (See [1].)

References

^[1] I. Baggs: Functions with a closed graph, Proc. Amer. Math. Soc. 43 (1974), 439 - 442.

^[2] R. V. Fuller: Relations among continuous and various non-continuous functions, Pacific Math. J. 25 (3), (1968), 495 - 509.

- [3] K. R. Gentry and H. B. Hoyle, III.: C-continuous functions, Yokohama Math. J. 18 (1970), 71-76.
- [4] J. L. Kelley: General Topology, (Russian translation Moscow, 1981).
- [5] P. Kostyrko and T. Šalát: On functions, the graphs of which are closed sets, Čas. pěst. mat. 89 (1964), 426-432 (in Russian).
- [6] P. Kostyrko, T. Neubrunn and T. Šalát: On functions, the graphs of which are closed sets II., Acta F.R.N. Univ. Comen. Math. 12 (1965), 51-61 (in Russian).
- [7] P. Kostyrko: A note on the functions with closed graphs, Čas. pěst. mat. 94 (1969), 202–205.
- [8] P. E. Long: Functions with closed graphs, Amer. Math. Monthly 76 (1969), 930-932.
- [9] P. E. Long and E. E. McGehee, Jr.: Properties of almost continuous functions, Proc. Amer. Math. Soc. 24 (1970), 175-180.

Author's address: 040 01 Košice, Švermova 9 (Vysoká škola technická).