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Jozer DoBos, Kos.ce
(Received July 15, 19€3)

For two topological spaces X and Y and any function f:X — Y the subset
{(x,/(x)); x € X} of the space X x Y (with Tychonoff's topology) is called thc graph
of f and is denoted by G(f). We denote by C(D,) the set of all such points at which
the function f defined on X is continous (discontinuous).

I. Baggs [1] dealt with the set of points of discontinuity of functions with closed
graphs. In this paper we shall generalize some results of the paper [1].

1. PRELIMINARIES
First we recall definitions and some basic properties.

Proposition A. Let a function f : X — Y have a closed graph. If K is a compact
subset of Y then f~'(K) is a closed subset of X. (Sce [2; Theorem 3.6].)
This proposition has the following corollary.

Proposition B. Let a function f:X — Y have @ closed graph. Then f~'(y) is
a closed subset of X for each y € Y. (Sec [7; Theorem 1].)

Proposition C. Let f: X — Y be any function where Y is a locally compact
Hausdorff space. If for each compact K < Y, f~}(K) is closed, then G(f) is closed.
(See [9; Theorem 6].)

Definition 1. Let X and Y be topological spaces, let f : X — Y be a function and let
pe X. Then fis said to be ¢-continuous at p provided the following holds: if U is an
open subsct of Y containing f(p) such that ¥ -- U is compact, then there is an open
subset V' of X containing p such that f(V') = U. The function f is said to be c-con-
tinuous (on X) provided f is c-continuous at each point of X. (See [3; Definition 1].)
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Proposition D. Let f : X — Y be any function where Y is Hausdorff. Then the fol-
lowing statements are equivalent:

(1) f is c-continuous, and

(2) if K is a compact subset of Y, then f~!(K) is a closed subset of X. (See [3;
Theorem 1].)

Corollary 1. Let f : X — Y be any function where Y is a locally compact Hausdorff
space. Then f is c-continuous if and only if G(f) is closed.

Definition 2. A function f: X — Y is locally bounded at x,e€ X if and only if
there exists a compact subset K of ¥ such that xq € Int (f ~'(K)). We denote by B,
the set of all such points at which the function f is locally bounded.

Lemma A. Let f: X — Y be given. Then G(f) is closed if and only if for each
x€X and y € Y, where y # f(x), there exist open sets U and V containing x and y,
respectively, such that f(U) n V = . (Sce [8; Lemma].)

Theorem 1. Let f : X — Y be given. If G(f) is closed, then
‘Bf c Cf .

Proof. We may assume that Y has at least two clements (in the opposite casc we evi-
dently have B, = C,). Let the sct G(f) be closed. Let x4 € B,. By Definition 2 there
exists a compactset K (in Y)such thatxq € Int (f 7 '(K)). Let T"be an open neighbour-
hood of the point f(x,). Since K — V'is compact and G(f) is closed, f ™K — V) 1s
closed by Proposition A. Put

U = Int(f(K)) — f7U(K - V).

Evidently U is an open neighbourhood of the point x,. We shall prove that f(U) < V.
Let x € U. Since f(x)e K and f(x) ¢ K — V, evidently f(x) e V. Hence x, € C,.

Corollary 2. Let f: X — Y be any function where Y is a locally compact space.
If G(f) is closed, then B; = C,.
The converse to Corollary 2 is not necessarily true as the following example shows.

Examplel. Let X = Y = R (where R denotes the set of all real numbers) with the
usual topology. Define a function f: X — Y as follows:

I—lsin£ for x % 0,
X X

fx)=1".
l 0 for x=0.

Then G(f) is not closed, but Y is locally compact and B, = C,.
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Lemma 1. Let the function f: X — Y have a closed graph. If K is a compact
subset of Y then f~Y(K) — B, is nowhere dense in X.

Proof. Let K be a compact subsct of Y. Put
A=f"K)- B,.

By Definition 2 it is easy to see that B, is open. By Proposition A the set f ~'(K) is
closed. Therefore A is closed. Now we shall prove that Int (4) = 0. Let x € Int (4).
Then A is a neihbourhood of the point x such that f(A4) = K. Since K is com-
pact by Definition 2 we have x € B,. This leads to a contradiction because x€ A <
c X — By. Therefore A is nowhere dense in X.

Theorem 2. Let f: X — Y be any function where Y is a o-compact space (i.e. Y
is the countable union of compact sets). If G(f) is closed, then X — By is closed and
of the first category (in X).

Proof. By the assumption, Y = {J K,, where each K, is compact. Let n € N

n=1

(where N denotes the set of all positive integers). Put

An =f—I(K") - Bf *

»

By Lemma 1 the set A, is nowhere dense in X. Hence X — B, = |J 4, 1s of the first
n=1

category in X.

2. REAL FUNCTIONS WITH CLOSED GRAPHS

Let X be a topological space. Denote by U(X) the class of all real functions defined
on X with closed graphs.

From Corollary 2, Lemma 1, Proposition B and Theorem 2 we obtain the fol-
lowing three theorems.

Theorem 3. Let f € U(X). Then the set D, is closed and of the first category (in X).
Theorem 4. Let f € U(X). Then D, n f~*(0) is closed and nowhere dense (in X).
Theorem A. Let X be a T, Bairespace. If f : X — R"(R" — the Euclidean n-space)
has a closed graph, then D, is closed and nowhere dense in X. (See [ 1], and for metric

spaces see [5; Theorems 4 and 5].)

Theorem B. A set F = R is closed and nowhere dense if and only if there exists
a function f : R — R such that f has a closed graph and D; = F. (See [1].)
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Theorem S. Let F be a closed, G5 and nowhere dense subset of a normal topological
space X. Let u : X — <0, 1) be a continuous function such that u"(()) = F. Define
a function g : X — R as follows:

_ [ Yfu(x) for xeX —F,
g(x)_{o for xeF.

Then g has a closed graph and D, = F.

Proof. We show that the graph of g is closed. Let {(x,., g(x,))}e4 be a convergent
net of points of the graph of g, i.e. therc exist x, and y, such that (x,, g(x,)) —
— (X0, ¥o) € X x R. We distinguish two cases.

a. Let there exist &, such that for every a > a, we have x, e F. Since x, = X,
and F is closed, we obtain x, € F. Hence g(x,) = 0 = y,.

b. For each o let there exist f > « such that x; ¢ F. It follows from the definition
of g that g(x) = 1 whenever xe X — F. The convergence of the net {g(X,)}sex
implies that there is o such that for every a« > o, we have x,€ X — F. Since u is
continuous at the point x, and g(x,) — yo, We obtain xo € X — F. Since g is continu-
ous on the set X — F, it is not difficult to verify that g(x,) — g(x,). Hence g(x,) = y,.

Finally, we show that D, = F. Evidently g is continuous on the sct X — F. Let
v € F. Becausce the set F is nowhere dense, we have w,(x) 2 1 for the oscillation of g
i x. Hence x € D,. The following example shows that there exists a metric space X
and a function fe U(X) such that D, is not nowhere dense.

Example 2. Let X = {x, x,,...} be a countably densc subset of R. Define
a function f: X — R as follows:

fx)=n (n=1,2,..).

Then f has a closed graph, but D; = X is not nowhere dense in X.

Proposition 1. Let X be u topological space. Let f € U(X). Then |f| e U(X).

Proof. Let x,e X. Let y & If(xo)l. First suppose that y = 0. Since y =+ f(x),
by Lemma A there exist 6, > 0 and a neighbourhood U, of the point x, such that

flU)N(y -6, y+8)=09.

Since —y = f(x,), by Lemma A there exist §, > 0 and neighbourhood U, of the
point x, such that

f(Uz)m(—y — 0z, =y +6,)=0.
Put

L’ = U]. N U2 N
6 = min (4,, 6,),
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V=_y=-9y+9).
Let xeU. If f(x) 20, since f(x)¢(y — 6, y +3,), we have ‘ ![(\)‘ — _vl =
= lf(x) — y| 2 8, 2 8. Therefore If(\)l ¢ V. If f(x) <O, then f(x)¢(—r — 8,

—y + 3,), hence |y — lf(.\-)’ ] = ]y +f(x)| 2 3, 2 0. Therefore |f(x)| ¢ V. In the
case y<OputU =X,V = (— oc; 0). Then by Lemma A the function f has a closed

graph.

Proposition 2. Let X be a topological space. Let o be a real number. Let f € U(X).
Then o . f € U(X).

Proof. Tt is obvious that for x = 0 we have «.fe U(X). Suppose that « # 0.
Let xo € X. Let K be a compact subset of R such that o . f(x,) ¢ K. Since K is closed,
there exists ¢ > 0 such that

(3) (a.f(xo) — &, a.f(x0) +e)nK =0,
Let k > 0 be a bound of the set K (i.e.,, K = {—k, k}). Put
h = max (k, kla]) ,
Ky =<=hhy = (f(x0) — &lja] . f(x0) + ]|}

Since f(xo) € K, and K, is compact, there exists a neighbourhod U of the point x,
such that
4) U)K, =0.
Let xe U. If x. f(x) ¢ (—k, kD, evidently « . f(x) ¢ K. Let & . f(x) € {(—k, k). Then
f(x) e {—h, Iy, therefore by (4) we have f(x) e (f(xo) — c/la{. J(xo) + ¢/|a]). Thus
|2 f(x) — = J(xo0)| = |:x Af(x) = f(xo)| < | - s’|a| = ¢, hence by (3) we have
a . f(x) ¢ K. Then Corollary 1 yields « . f € U(X).
Remark 1. Propositions 1 and 2 are proved in the paper [6] for X a metric space.
It is known that"the class ((X) is not closed with respect 1o addition (sec [6;
Example 3]). We prove that U(X) is closed with respect to addition of nonnegative
functions.

Theorem 6. Let X be a topological space. Let f, g € U(X) be nonnegatite functions.
Then f + g € U(X).

Proof. Let xo € X. Let K be a compact subsct of R such that f(x,) + g(x,) ¢ K.
The closedness of the sct K implies that there exists ¢ > 0 such that

(3) (f(xo) + g(xo) — &, f(xo) + 9(x0) + &) nK =0,
Let k> 0 be a bound of the set K (i.c. K « {—Ah, kD). Put

K, =<0,ky = (f(xo) — £2, f(x0) +£"2),
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K; =<0, k) — (g9(x0) — ¢/2, g(x0) + ¢[2).
Since fe U(X). by Corollary 1 there exists a neighbourhood U, of the point x,
such that

(6) f(U1)nK1=®.

Since g € U(X), by Corollary 1 there exists a neighbourhood U, of the point x, such
that

(7) gUzs) n Ky = 0.
Put
U = Ul N Uz .

Let x e U. If f(x) + g(x) > k, evidently f(x) + g(x) ¢ K. Let f(x) + g(x) € <0, k).
Since by (6) we have f(x) € €0, k) — K|, by the definition of K, we obtain

(8) f(x) e (f(x0) — &2 f(x0) + £[2) -
Since by (7) we have g(x) € <0, k) — K,, by the definition of K, we obtain

) g(x) € (9(xo) — &2, g(xo) + ¢/2).

From (8) and (9) it follows that |[(f(x) + g(x)) — (f(x0) + g(x0))| £ |/(x) — S (xo)| +
+ ’g(,\') — g(xo)| < #2 + €2 = &, hence by (5) we have f(x) + g(x) ¢ K. Therefore
(/4 g){U)n K == 0. By Corollary | we obtain [ + gy € U(X).

Corollary 3. Let X be a topological space. Let f, g € U(X). Then |f| |g| e U(X)

Defirition 3. A topological space X is called perfectly normal if and only if it is
normal and each closed subset of X is G,. (See [4], p. 181.)

Theorem 7. Let X be a perfectly normal topological space. Then A < X is closed
and of the first category in X if and only if there exists a function f € U(X) such that
Df = A.

Proof. Necessity follows from Theorem 3. Sufficiency. Let A = X be closed and

o]

of the first category in X. Then A = {J A4, where each A, is a closed nowhere densc
n=1

subset of X, A, = 4,4, (n =1,2,...). Let g : X — (0, 1) be a continuous function
such that g7'(0) = A. Let g, : X — <0,1> (n = 1,2,...) be continuous functions
such that for each ne N

(10) 47(0) =
(11) gu(x) 2 g(x) forcach xeX.

The existence of functions g, g, (n =1, 2, ) follows from Urysohn’s lemma. For
cach n e N define a function f, : X = R as follows:
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1/g,(x) for xeX — A,,
n X) =
f( ) {0 for xe A,.

By Theorem 5 we have f, e U(X) (n = 1, 2, ...). Consider the series

(12 T(O)-1).

We now show that the series (12) is convergent to some function f : X — R. If x€ 4,,
for some m € N, then

m

05 3 ((12) Six) = (/) 1) < +eo.

If xe X — A, then

A

0= ¥ (172)- 4 = X (12) - (tfan())

< 3 ((112) - (o) = 1fa() < +eo.

We now show that D, = A. First we shall prove that X — 4 < C,. Let be X — A.

Since g(b) > 0 and g is continuous at the point b, there exists a neighbourhood U
of the point b such that

(13) Vxe U :g(x) > g(b)/2.
Evidently U « X — A. Hence by (13) we have for each xe U

Fi(%) = 1jgs(x) £ 1g(x) < 2/g(b) (n=1,2,...).

Therefore the series (12) is uniformly convergent on the set U. Since all functions f,
arc continuous on U, the function f is continuous at the point b. Now we show that
A c D,.Letae A. Then a € A, for some m € N. We shall prove that for each neigh-
bourhood V of the point a and for each ne N there exists a point y € V such that
f(y) > n. Let ¥ be a neighbourhood of the point a. Let n € N. Since g,, is continuous
at the point a, there exists a neighbourhood W of the point @ such that

(14) Vxe W:g,(x) <27 "n.

Since A,, is closed and nowhere dense, there exists a point y € V' W such that y e
€ X — A,. Hence by (14) we have

f) 2z (1/27) . (1gu(y)) > n.
Therefore ae X — B, = D,.
Now we shall prove that f e U(X). Let K be a compact subset of R. We now show
that X — f~'(K) is open. Let x, € 4,, — /7 '(K) for some m e N. Put
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=3 (1)1

By Theorem $, Proposition 2 and Theorem 6 we obtain h € U(X). Since f(x,) ¢ K
and K is closed, there exists ¢ > 0 such that

(f(x) — & f(x)) + &) n K =9,
Let k > 0 be a bound of the set K (i.e. K = {(—k, k)). Put

K, =<0,ky — (f(xy) — & f(x,) + 2).

Since h(x,) = f(x,) ¢ K,, K, is compact and h e U(X), by Proposition A the set
X — h™'(K,) is an open neighbourhood of the point x;. Since g,, is continuous at
the point x,, there exists a neighbourhood U, of the point x; such that U; « X —
— h™(K,) and for each x € U, we have

(15) gm(x) < 27"(f(x,) + €).

If xeU, n A, then f(x) = h(x) ¢ K,. Thercfore f(x)¢ K. If xeU; — A
(15) we have

B 2 (1127) - Sul) = (127 (Ugal)) > £(x2) + .

Since h(x)¢ K,, we obtain h(x)¢ <0, k). Hence f(x) = h(x) > k, then f(x)¢K.
Therefore the point x; has a neighbourhood U, such that U; = X — f7!(K).
Let x; € (X — A) — f7'(K). Since x, € C,, the set

Uy=X—fY(K)=/""R - K)

then by

no

is a neighbourhood of the point x,.
Therefore the set X — f7'(K) is open. By Proposition C we have f e U(X).
This theorem has the following corollary.

Theorem C. Let X be a Baire metric space. Then F < X is closed and nowhere
dense in X if and only if there exists a function f € U(X) such that D; = F.

The following example shows that the assumption “X is perfectly normal™ in
Theorem 7 cannot be replaced by the assumption *“X is normal”.

Example 3. Let X = {a); w < Q} (where Q denotes the first uncountable ordinal
number) with the order topology. It is well known that X is a normal space, and the
set {Q} is closed and nowhere dense in X but for each fe U(X) we have D, + {Q}.

(See [1].)
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