UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

XL-XLI - 1982

CLIQUISH FUNCTIONS, RIEMANN INTEGRABLE FUNCTIONS AND QUASI-UNIFORM CONVERGENCE

JOZEF DOBOŠ, TIBOR ŠALÁT, Bratislava

Introduction

In this paper we shall prove some results on cliquish functions and on the quasi-uniform convergence of sequences of cliquish functions and Riemann integrable functions, respectively.

Let X be a topological and Y a metric spaces (with the metric d). The function $f: X \to Y$ is said to be cliquish at the point $p \in X$ if for each neighbourhood U(p) of the point p and each $\varepsilon > 0$ there exists an open set $U \neq \emptyset$, $U \subset U(p)$ such that $d(f(x), f(y)) < \varepsilon$ holds for each two points $x, y \in U$. The function f is said to be cliquish on X if it is cliquish at each point $x \in X$ (cf. [10]).

Let X be a set and Y a metric space (with the metric d). The sequence $\{f_n\}_{n=1}^{\infty}$ of functions $f_n: X \to Y$ (n = 1, 2, ...) is said to be quasi-uniformly convergent to the limit function $f: X \to Y$ if for each $x \in X$ we have $\lim_{n \to \infty} f_n(x) = f(x)$ and if for each $\varepsilon > 0$ and each $m \in \{0, 1, 2, ...\}$ there exists such a positive integer r that for each $x \in X$ the inequality

$$\min \{d(f_{m+1}(x), f(x)), ..., d(f_{m+r}(x), f(x))\} < \varepsilon$$

holds (cf. [8], p. 143).

Let X, Y be two topological spaces, let $f: X \to Y$. Denote by $C_f(A_f)$ the set of all such points at which the function f is continuous (cliquish). We put $D_f = X - C_f$.

The topological space X is said to be a Baire space if every non-empty open subset of X is a set of the second Baire category in X (cf. [2]).

1. Cliquish functions and pointwise discontinuous functions

We shall give a characterization of cliquish functions f defined on a Baire space using the sets D_f .

Theorem 1.1. Let X be a Baire and Y a metric spaces. The function $f: X \to Y$ is cliquish on X if and only if the set D_f is a set of the first Baire category.

Proof. If f is cliquish on X, then D_f is a set of the first Baire category in X (cf. [7]).

Conversely, let D_f be a set of the first category in X. Since $X - A_f \subset D_f$, the set $X - A_f$ is a set of the first category in X, too. It is well-known (cf. [6]) that the set $X - A_f$ is open. Since X is a Baire space, the set $X - A_f$ is empty, i.e. $X = A_f$.

Remark. In Theorem 1.1 the condition "X is a Baire space" cannot be omitted. Let X be the space of all rational numbers and R the space of all real numbers (with Euclidean metrics). Then there exists a function $f: X \to Y$ such that $A_t = \emptyset$ (cf. [6], Theorem 2). Thus f is not cliquish and D_f is a set of the first category in X.

The following theorem generalizes a certain result from [3], p. 38.

Theorem 1.2. Let X be a Baire and Y a metric spaces. The function $f: X \to Y$ is pointwise discontinuous (i.e. C_f is dense in X) if and only if the set D_f is a set of the first Baire category in X.

Proof. Let D_f be a set of the first category in X. If G is a non-empty open set in X, then G is a set of the second category in X. Thus $G - D_f$ is non-empty, hence $G \cap C_f \neq \emptyset$. The density of C_f follows.

Let f be pointwise discontinuous. It is well-known that C_f is a G_δ -set in X (cf. [4], p. 78). Thus C_f is residual in X (cf. [5], p. 49), hence D_f is a set of the first category in X.

Remark. a) In Theorem 1.2 the condition "X is a Baire space" cannot be omitted. Let X be the space of all rational numbers of the interval $\langle 0, 1 \rangle$ and Y = R (with the Euclidean metrics). Let $f: X \to Y$, $f\left(\frac{p}{q}\right) = \frac{1}{q}$ for $\frac{p}{q} \in X$, (p, q) = 1, q > 0. Then D_f is a set of the first category in X, but f is not pointwise discontinuous.

b) In Theorem 1.2 the condition "Y is a metric space" cannot be replaced by condition "Y is a topological space". Let $X = \{x_1, x_2, x_3\}$, $T = \{\emptyset, \{x_1, x_2\}, X\}$, $Y = \{a, b\}$, $S = \{\emptyset, \{b\}, Y\}$, where $x_i \neq x_j$ for $i \neq j$ and $a \neq b$. Then (X, T) is a Baire space and (Y, S) is a topological space. Let $f: X \to Y$, $f(x_1) = f(x_3) = a$, $f(x_2) = b$. Then f is pointwise discontinuous, but D_f is a set of the second category in X.

Combining Theorem 1.1 with Theorem 1.2 we obtain at once the following result which is an extension of a certain result of the paper [7] (Theorem (iv')).

Theorem 1.3. Let X be a Baire and Y a metric spaces. The function $f: X \to Y$

is cliquish on X if and only if it is pointwise discontinuous on X.

2. Quasi-uniform convergence and the classes of cliquish and Riemann integrable functions

In this part of the paper we shall study limit functions of quasi-uniformly convergent sequences of cliquish functions and Riemann integrable functions, respectively.

We now extend a certain result of the paper [1].

Theorem 2.1. Let X be a Baire and Y a metric spaces. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of cliquish functions $f_n: X \to Y$ (n=1, 2, ...) which converges quasi-uniformly to the function $f: X \to Y$. Then f is a cliquish function on X.

Proof. From quasi-uniform convergence we get at once

$$\bigcap_{n=1}^{\infty} C_{f_n} \subset C_f, \quad \text{i.e.} \quad D_f \subset \bigcup_{n=1}^{\infty} D_{f_n}$$

(cf. [8], p. 143 and [9], p. 167). Since D_{f_n} (n = 1, 2, ...) is a set of the first category in X, D_f is a set of the first category in X, too. On account of Theorem 1.1 we can conclude that f is cliquish on X.

It is well-known that if a sequence $\{f_n\}_{n=1}^{\infty}$ of Riemann integrable functions on $\langle a, b \rangle$ converges uniformly to f on $\langle a, b \rangle$, then the function f is again Riemann integrable on $\langle a, b \rangle$ and

$$\int_{a}^{b} f(t) dt = \lim_{n \to \infty} \int_{a}^{b} f_n(t) dt$$
 (1)

In connection with this fact we shall prove the following theorem.

Theorem 2.2. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of Riemann integrable function f_n : $\langle a, b \rangle \to R$ (n=1, 2, ...) which converges quasi-uniformly to $f: \langle a, b \rangle \to R$. Then f is a Riemann integrable function on $\langle a, b \rangle$.

Proof. At first we shall prove that f is bounded. It follows from the quasi-uniform convergence of the sequence $\{f_n\}_{n=1}^{\infty}$ that there exists such a positive integer r that for each $x \in \langle a, b \rangle$ the inequality

$$\min \{ |f_1(x) - f(x)|, ..., |f_r(x) - f(x)| \} < 1$$
 (2)

holds. Since f_i (j = 1, 2, ..., r) are bounded, there exists such a positive number K that for each $x \in \langle a, b \rangle$ we have

$$|f_i(x)| \le K \quad (j=1, 2, ..., r)$$
 (3)

From (2) and (3) we get $|f(x)| \le K+1$ for each $x \in \langle a, b \rangle$. Thus f is bounded on $\langle a, b \rangle$.

It suffices to show that the Lebesgue measure of the set D_f is zero (cf. [8], p. 489). Since the Lebesgue measure of each of the sets D_{f_n} (n = 1, 2, ...) is zero (cf. [8], p. 489) and as we already have seen $D_f \subset \bigcup_{n=1}^{\infty} D_{f_n}$, it is clear that the Lebesgue measure of the set D_f is zero. This ends the proof.

Remark. There exists a sequence $\{f_n\}_{n=1}^{\infty}$ of continuous functions $f_n: \langle 0, 1 \rangle \to R$ (n=1, 2, ...) quasiuniformly converging to a function $f: \langle 0, 1 \rangle \to R$ such that (1) does not hold. We put $f_n(x) = 0$ for $0 \le x \le \frac{1}{n+1}$ and for $\frac{1}{n} \le x \le 1$. Further we put $f_n(x_n) = 2n(n+1)$

$$\left(x_n = \frac{1}{2}\left(\frac{1}{n} + \frac{1}{n+1}\right)\right) \quad (n = 1, 2, ...)$$

Let f_n be linear and continuous on the intervals $\langle \frac{1}{n+1}, x_n \rangle, \langle x_n, \frac{1}{n} \rangle$ (n=1, 2, ...). Evidently the functions f_n (n=1, 2, ...) are continuous on $\langle 0, 1 \rangle$ and the sequence $\{f_n\}_{n=1}^{\infty}$ converges quasi-uniformly to the function $f: \langle 0, 1 \rangle \to R$, f(x) = 0 for each $x \in \langle 0, 1 \rangle$.

Since
$$\int_0^1 f(t) dt = 0$$
 and $\int_0^1 f_n(t) dt = 1$ $(n = 1, 2, ...)$, (1) is not true.

BIBLIOGRAPHY

- [1] Doboš, J.: Some generalizations of the notion of continuity and quasi-uniform convergence. Čas. pěst. mat. 106 (1981), 431—434.
- [2] Frolik, Z.: Baire spaces and some generalizations of complete metric spaces. Czechosl. Math. J. 11 (86) (1961), p. 237—248.
- [3] Oxtoby, J. C.: Mass und Kategorie. Springer-Verlag, Berlin-Heidelberg-New York 1971.
- [4] Hewitt, E.—Stromberg, K.: Real and Abstract Analysis. Springer-Verlag, Berlin—Heidelberg—New York 1969.
- [5] Kuratowski, K.: Topologie I. PWN, Warszawa 1958.
- [6] Lipiński, J. S.—Šalát, T.: On the points of quasicontinuity and cliquishness of functions. Czechosl. Math. J. 21 (96) (1971), p. 484—489.
- [7] Marcus, S.: Sur les fonctions quasicontinues au sens de S. Kempisty. Coll. Math. 8 (1961), p. 47—53.

- [8] Sikorski, R.: Funkcje rzeczywiste I. PWN, Warszawa 1958.
- [9] Šalát, T.: Nekonečné rady. Academia, Praha 1974.
- [10] Thielman, H.: Types of functions. Amer. Math. Monthly 60 (1953), p. 156-161.

Author's address: Received: 13.5.1980

Jozef Doboš, Tibor Šalát MFF UK, Katedra algebry a teórie čísiel, Matematický pavilón Mlynská dolina Bratislava 842 15

SÚHRN

KĽUKATÉ FUNKCIE, FUNKCIE INTEGROVATEĽNÉ V RIEMANNOVOM ZMYSLE A KVÁZIROVNOMERNÁ KONVERGENCIA

J. Doboš, T. Šalát, Bratislava

Nech X je Baireho topologický priestor a Y je metrický priestor. Nech $\{f_n\}_{n=1}^{\infty}$ je postupnosť kľukatých funkcií (cliquish functions), $f_n: X \to Y$ (n = 1, 2, ...), ktorá kvázirovnomerne konverguje k funkcii $f: X \to Y$. Potom f je zase kľukatá funkcia.

Nech $a, b \in R$, a < b, nech $\{f_n\}_{n=1}^{\infty}$ je postupnosť reálnych integrovateľných funkcií v Riemannovom zmysle na intervale $\langle a, b \rangle$. Ak $\{f_n\}_{n=1}^{\infty}$ konverguje kvázirovnomerne k funkcii $f: \langle a, b \rangle \to R$, tak f je integrovateľná funkcia na intervale $\langle a, b \rangle$ v Riemannovom zmysle.

РЕЗЮМЕ

ИЗВИЛИСТЫЕ ФУНКЦИИ, ФУНКЦИИ ИНТЕГРЫРУЕМЫЕ В СМЫСЛЕ РИМАНА И КВАЗИРАВНОМЕРНАЯ СХОДИМОСТЬ

Я. Добош, Т. Шалат, Братислава

Пусть X топологическое пространство Бера и Y метрическое пространство. Пусть

 $\{f_n\}_{n=1}^{\infty}$

последовательность извилистых функций (cliquish functions) $f_n: X \to Y$ (n = 1, 2, ...), которая сходится квазиравномерно к функции $f: X \to Y$. Потом f извилистая функция.

Пусть $a, b \in R$, a < b, пусть

 $\{f_n\}_{n=1}^{\infty}$

последовательность функций f_n : $\langle a, b \rangle \to R$ (n = 1, 2, ...) интегрыруемых в смысле Римана на $\langle a, b \rangle$. Эсли

 $\{f_n\}_{n=1}^{\infty}$

сходится квазиравномерно к функции f на (a, b), то f тоже интегрыруема на (a, b) функция в смысле Римана.